

University School of Chemical Technology GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY Sector-16C, Dwarka, New Delhi-78

Date: 29.11.2021

MINUTES OF BOS MEETING

Board of Studies (BOS), USCT meeting was held on 29th November 2021 at 11.00am in online mode to discuss the New Proposed Scheme and Syllabus of M.Tech. (Chemical Engineering) and (Biochemical Engineering) and B.Tech. (Chemical Engineering) and (Biochemical Engineering).

Following members were present:

1:	Prof. A.K. Jain
2.	Prof. Rajesh Khanna, IIT Delhi
3.	Prof. T.R. Sreekrishnan, IIT Delhi,
4.	Prof. Ajay Bansal, NIT, Jalandhar,
5.	Prof. S.K. Jana, NIT, Jaipur,
6.	Prof. U.K. Mandal
7.	Prof. Tapan Sarkar
8.	Prof. S.K. Sharma
9.	Prof.Biswajit Sarkar
10.	Prof. Aradhana Srivastava
11.	Prof. Neeru Anand
12.	Dr. Rakesh Angira
13.	Dr. Sanigdha Acharya
14.	Mr. Azad Singh
15.	Dr. Dinesh Kumar
16.	Dr. Vinita Khandegar

Dean, USCT, Chairman External Member External Member External Member External Member Special Invitee

Prof. A.K. Shrivastava, External Member could not attend the meeting due to his prior commitments.

The agenda items were circulated to the BOS members in advance of the meeting. The agenda items were discussed and deliberated upon one by one. The following decisions were made during the meeting:

1. Scheme and Syllabus of B.Tech/M.Tech. (Chemical Engineering) dual degree:

Scheme and syllabus of B.Tech/M.Tech. (Chemical Engineering) dual degree was discussed and approved. The scheme and syllabus is enclosed as A-1 & A-2. These will be implemented from Academic session 2021-22. The M.Tech (Chemical Engineering) Scheme and syllabus as discussed above shall also be applicable for students admitted in academic year for B.Tech/M.Tech (Chemical Engineering) dual degree programme in 2017-18.

2. Scheme and Syllabus of B.Tech/M.Tech. (Biochemical Engineering) dual degree:

Scheme and syllabus of B.Tech/M.Tech. (Biochemical Engineering) dual degree was discussed and approved. The scheme and syllabus is enclosed as A-3 & A-4. These will be implemented from Academic session 2021-22. The M.Tech (Biochemical Engineering) Scheme and syllabus as discussed above shall also be applicable for students admitted in academic year for B.Tech/M.Tech (Biochemical Engineering) dual degree programme in 2017-18.

3. M.Tech. (Chemical Engineering) Regular

The scheme and Syllabus for M.Tech. (Chemical Engineering), Regular Students shall be same as in agenda item no. 1. This will be applicable for students admitted in the year 2021-22 and onwards.

4. Minor Degree in Emerging Areas

Further, Minor degrees in Emerging areas were discussed and it was decided to offer Minor degree along with Major B.Tech. degree in Chemical as well as in Biochemical Engineering. To award Minor degree in Chemical Engineering along with Major disciplines of other USS, few courses of Chemical Engineering have also been identified and approved. The details are annexed as [A-5]. The degree shall be named as B.Tech.(Chemical Engineering) with minor specialization in <name of minor specialization area>. For Biochemical Engineering students, B.Tech.(Biochemical Engineering) with minor specialization area>.

Prof. Arinjay Kumar Jain

E-movil attached Prof. Ajay Bansal

Prof. Tapan Sarkar

Prof. Aradhana Srivastava

Dr. Sanigdha Acharya

Dr. Vinita Khandegar

E-Mail Attached Prof. Rajesh Khanna

Prof. T.R. Sreekrishnan

Prof. S.K. Jana

E-moul attached

Prof. U.K. Mandal

Prof. Neeru Anand

Mr. Azad Singh

Prof. Biswajit Sarkar

Dr. Rakesh Angira

Dr. Dine

UNIVERSITY SCHOOL OF CHEMICAL TECHNOLOGY SCHEME OF EXAMINATION B. Tech. (Biochemical Engineering)

Program Scheme and Syllabus Applicable to

CHOICE BASED CREDIT SYSTEM

Effective from 2021 Onwards

Entrepreneurship | Employability | Skill Development

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY

SECTOR-16C, DWARKA, NEW DELHI - 110078

Approved in the Board of Studies of USCT held on 29th November, 2021

Guru Gobind Singh Indraprastha University

Vision

The University will stimulate both the hearts and minds of scholars, empower them to contribute to the welfare of society at large; train them to adopt themselves to the changing needs of the economy; advocate them for cultural leadership to ensure peace, harmony and prosperity for all.

Mission

Guru Gobind Singh Indraprastha University shall strive hard to provide a market oriented professional education to the student community of India in general and of Delhi in particular, witha view to servingthecauseofhighereducationaswellastomeettheneedsoftheIndianindustriesbypromoting establishmentofcollegesandSchoolsofStudiesasCentresofExcellenceinemergingareasof education with focus on professional education in disciplines of engineering, technology, medicine, education, pharmacy, nursing, law, etc.

Quality Policy

Guru Gobind Singh Indraprastha University is committed to providing professional education with thrust on creativity, innovation, continuous change and motivating environment for knowledge creation and dissemination through its effective quality management system. Rules & Regulations University administration functions while dealing with various issues of administrative and academic significance, with in the provisions of the University Act, rules and regulations (Statutes & Ordinances) framed there under.

University School of Chemical Technology

The University School of Chemical Technology recognizes the importance of chemical industry and the need for trained manpower, since establishment of the University in 1999, THE UNIVERSITY has taken the bold and visionary decision to start the University School of Chemical Technology, the only one of its kind in this partof the country after IIT, DELHI. The founding fathers concerned with education required in chemical industry showed extraordinary vision100 years ago to recognise that education to provide trained manpower could be provided under two broad areas namely Unit Operations and Unit Processes. This frame work still holds although it has evolved, expanded and continuously tuned over the last 10 decades to progressively include thermo dynamics, reaction engineering, process control, process economics, mathematical and numerical methods, computers, process engineering, separation processes, catalysis hazard and safety etc. each one advancing in its own right with extensive research work both in academia and in industry. The School was established with the twin objectives of generating effective trained professionals and to keep pace with the R & D activities of this fast changing field of Chemical Technology. The B.Tech and M.Tech. (Chemical and Biochemical) programme being offered by the school are based on the pattern of I.I.T.'s and other national and international institutions of repute. The well-structured programmes are meant to impart comprehensive knowledge of various core chemical and biochemical engineering subjects, interdisciplinary courses in Biotechnology, Information Technology, Environment Management, Management Studies through Electives, and industrial exposure through practical training in laboratories and Industrial Units.

Vision

Achieving excellence through active teaching, skill development and research in the areas of chemical and biochemical engineering and allied areas to become a recognized centre for education and research.

Mission

To generate new knowledge by offering graduate and post graduate programme and provide quality manpower with high employment potential in the present liberalised economic climate in the era of globalization.

- To generate new knowledge by offering graduate and post graduate programme.
- Impart quality teaching and train students in addressing the challenges in the Chemical and Biochemical Engineering and allied areas.
- Provide quality manpower with high employment to achieve proficiency in Chemical and Biochemical Engineering through innovative teaching and state of the art laboratories.
- Develop inclusive technologies with a focus on sustainability.
- Team up with industries and research institutes to cater community needs.

Bachelor of Technology (Biochemical Engineering)

The school was established since the foundation of the university in 1999. It is now a centre for teaching and research in the modern field of chemical technology and bio-chemical engineering. Considering the dynamism of science and engineering, the school started the post graduate course in chemical engineering since the conception of the university. The purpose was creating well-trained human resources to fulfill the growing demand in the fields of chemical processes development. The course emphasized to synthesize and evolve chemical process technology towards sustainable development and trained work force for research and development. The curriculum has been designed in order to provide education to the students with background of Chemical Engineering/ Biochemical Engineering/ Chemical Technology / Biotechnology / Environmental Engineering or allied fields.

PEO1	Pursue successful industrial / academic / research careers in chemical engineering and
	allied fields.
PEO2	Apply the knowledge of advanced topics in chemical engineering to meet contemporary
	Needs of industry and research.
PEO3	Exhibit project management skills with the multifaceted aspects of using modern software,
	Equipment / analytical instrument, and ability to work in collaborative environment.
PEO4	To make professionals to apply principles of chemical engineering in solving practical
	Problems related to safety, energy and environment.
PEO5	Pursue self-learning to remain a breast with latest developments for continuous technical
	And professional growth.

Program Educational Objectives (PEO)

Programme Outcomes (POs)

At the end of the program the student will be able to:

PO1	Identify, formulates, and solve engineering problems by applying knowledge of
	Mathematics / science / engineering.
PO2	Apply the state-of-the-art computational and simulation tools for solving problems in
	Chemical and allied engineering industries.
PO3	Design and conduct experiments, as well as to analyse and interpret data.
PO4	Communicate professionally to express views and to publish technical articles.
PO5	Function on multi disciplinary team or to lead a technical group.
PO6	Understand of professional and ethical responsibility for development of the society.
PO7	Work as an independent consultant / entrepreneur.
PO8	Pursue life-long learning, updating knowledge and skills for technical, professional and
	Societal development.

Programme specific outcomes (PSOs)

PSO1	The students will be familiar with the concepts of chemical engineering to identify, analyse and solve complex problems encountered in chemical and other allied industries, by applying the principles of process engineering and using modern Engineering tools such as ASPENPLUS, MATLAB, ANSYS, DESIGN-EXPERT etc.
PSO2	The students acquire the ability to design and optimize the biochemical process engineering systems, chemical plants and chemical production considering public health, safety and welfare, as well as global, social, environmental and economic aspects.
PSO3	The students will comprehend to play an important role in the diversified area of chemical engineering (Industries, Academia and R & D) and professional environment, and able to carry out multidisciplinary research in the field of chemical process engineering, environmental engineering, catalysis development and reactor design, nano-science and technology, and material engineering etc.
PSO4	The students will be expertise to synthesizing the information of recent advancement in chemical engineering for conducting research in the wider fields of theoretical development, current issues and strategies planning.

Acronyms:

BCE: Biochemical EngineeringBS:

Basic Science

C: Number of credits assigned to a course / paperCE:

Chemical Engineering

EAE: Emerging Area Elective offered by schoolES:

Engineering Science

HS: Humanities, social science, managementL:

Number of Lecture hours per week

MC: Mandatory courses

NUES: An evaluation scheme in which evaluation is conducted by a committee, a teacher or a group of teacher as described in the scheme of study.

OAE: Open area elective offered by other school or open / emerging area elective offered by the school. This allows the student to have two minor specializations also.

PC: Programme Core, that is course / paper offered in the discipline of the programme as a compulsory paper.

PCE: Programme Core Elective, that is elective course / paper offered in the discipline of the programme.

T/ P: Number of Tutorial / Practical Hours per week

Marking Scheme of Examination

For Theory

- 1. Teachers Continuous Evaluation: 25 marks
- **2.** Term end Theory Examinations: 75 marks

For Practical/Viva

- 1. Teachers Continuous Evaluation: 40 marks
- 2. End Term Practical/Viva: 60 marks

		Semester (Credits)												
Group	Ι	II	III	IV	V	VI	VI I	VIII	Credits					
BS	12	19	3						34					
HS	5	4	2			4			15					
ES	12	5							17					
MS					2				2					
PC			23	28	17	1	8	12	89					
PCE					3	9	6		18					
EAE					4	6	6		16					
OAE					4	8	8		20					
Total	29	28	28	28	30	28	28	12	211					

Credit Distribution

Note:

Student must earn minimum 200 credits for the Award of B.Tech. Degree. However, Student has to appear in all the courses as per scheme, and can drop credits from elective courses only.

Student can obtain degree in Major discipline only, and may opt Minor degree specialization along with Major discipline of Biochemical Engineering. In the later case, student should pass all the courses listed under corresponding Minor degree specialization.

FIRST YEAR SCHEME

for

B. Tech. Biochemical Engineering

Offered by

UNIVERSITY SCHOOL OF CHEMICAL TECHNOLOGY GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY Sector 16/C, Dwarka, New Delhi - 110078

B. Tech Biochemical Engineering, USCT, Guru Gobind Singh Indraprastha University

	First Semester									
Group	Code	Paper	L	P	Credits					
Theory Papers										
ES	ICT101	Programming for Problem Solving	3	-	3					
ES	ICT103	Electrical Science	3	-	3					
ES	ICT105	Engineering Mechanics	3	-	3					
HS	HS107	Communication Skills-I	3	-	3					
BS	BS109	Engineering Chemistry – I	3	-	3					
BS	BS111	Engineering Mathematics – I	4	-	4					
BS	BS113	Engineering Physics – I	3	-	3					
HS/MC	LLB115*	Indian Constitution	2	-	2					
Practic	al/Viva Voce									
ES	ICT151	Programming for Problem Solving Lab.	-	2	1					
ES	ICT153	Engineering Graphics-I	-	2	1					
ES	ICT155	Electrical Science Lab.	-	2	1					
BS	BS157	Engineering Chemistry-I Lab	-	2	1					
BS	BS159	Engineering Physics - I Lab	-	2	1					
Total			24	10	29					

*NUES : Comprehensive evaluation by the teacher concerned out of 100.

	Second Semester											
Group	Paper	Paper	L	Р	Credits							
_	Code											
Theory	Papers											
ES		School Specific Engineering Science Paper**			3							
HS	HS102	Communication Skills – II	3	-	3							
BS	BS104	Engineering Chemistry – II	3	-	3							
BS	BS106	Engineering Mathematics - II	4	-	4							
BS	BS108	Engineering Physics-II	3	-	3							
BS	BS110	Probability and Statistics for Engineers ***	3	2	4							
HS/MC	ICT114*	Human Values and Ethics	1	-	1							
BS/MC	EMES11	Environmental Studies	4	-	4							
	2											
Practic	al/Viva Voc	e										
ES	ICT152	Engineering Graphics-II Lab.	-	2	1							
BS	BS156	Engineering Chemistry – II Lab	-	2	1							
BS	BS158	Engineering Physics –II Lab	-	2	1							
One paper	from the fol	lowing#:										
ES	ICT154	Workshop Technology		2	1							
ES	ICT160	Programming in Python		2								
		Total	24	8	29							

*NUES: Comprehensive evaluation by the teacher out of 100, no term end examination shall be held.

Either Workshop practice or Programming in Python paper shall be offered to the students by the school. If Workshop Technology paper is offered it shall be considered as a Theory paper otherwise Workshop practice shall be considered as practical paper

** School Specific Engineering Science Paper in this semester shall be one of the papers from the list below or any paper (approved by the Board of Studies of the School) decided by the Academic Programme Committee of the School to be offered in the first year/second semester.

Second Sen	Second Semester Open Elective from the School											
Group	Paper	Paper	L	Р	Credits							
	Code											
	Open I	Open Elective Papers										
ES	ICT116	Introduction to Manufacturing Process	3	-	3							
ES	BS118	Industrial Chemistry	3	-	3							
ES	BT120	Introduction to Biotechnology	3	-	3							

*** The Teachers' Continuous Evaluation Component shall be 25, Term end theory examinations of 50 marks and term end practical marks shall be of 25 marks maximum. The marks obtained in each component by the student shall be reflected in the marksheet.

SYLLABUS OF FIRST YEAR

for

B. Tech. Biochemical Engineering

Offered by

UNIVERSITY SCHOOL OF CHEMICAL TECHNOLOGY GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY Sector 16/C, Dwarka, New Delhi - 110078

				0	0				0	•		, i
PaperCo	le: ICT1	01	Paper	Progran	nming for	· Problen	n Solving				L T	P C
PaperID:	164101										3 -	3
Marking	Marking Scheme:											
1.	1. Teachers Continuous Evaluation: 25 marks											
2.	2. Term end Theory Examinations: 75 marks											
Instructio	on for pap	per setter										
1. There	should be	e 9 questio	ons in the	term end	examinati	ions quest	ion paper	•				
2. The f	irst (1 st) c	question sl	nould be	compulse	ory and co	over the e	ntire sylla	ubus.This	question	should be	e objecti	/e, single
line a	nswers or	short ans	wer type	question of	of total 15	marks.						
3. Apart	from que	estion 1 w	hich is c	ompulsor	y, rest of	the paper	shall cor	nsist of 4	units as p	er the sy	llabus. E	very unit
shall	have two	question	s coverin	g the cor	respondin	ig unit of	the sylla	ıbus. Hov	vever, the	student	shall be	asked to
attem	pt only o	ne of the t	wo quest	ions in th	e unit. In	dividual o	questions	may cont	ain upto :	5 sub-par	ts / sub-c	uestions.
Each	Unit shall	l have a m	arks weig	ghtage of	15.							
4. The q	uestions a	are to be fi	amed kee	eping in v	iew the le	arning ou	tcomes of	f the cours	se / paper	. The star	idard / le	vel of the
quest	ons to be	asked sho	uld be at	the level	of the pre	scribed te	xtbook.	1 .	. 1.0			
5. The result of the result	equiremen	nt of (sciei	itific) cal	culators /	log-tables	s / data – t	ables may	be specif	fied if requ	lired.		
Course O	bjectives	:										
1:	To impa	art basic k	nowledg	e about si	mple algo	prithms fo	or arithme	tic and lo	gical pro	olems so	that stud	ents can
-	understa	and how to	write a j	program,	syntax and	d logical e	errors in 1	C'.	· 1		(6)	
2:	To impa	art knowle	dge abou	t how to 1	mplement	condition	hal branch	ling, iterat	tion and re	ecursion i	<u>n ·C'.</u>	1
3:	To imp	art knowl	edge abc	ut using	arrays, p	ointers, fi	iles, unio	n and str	uctures to	o develop	o algorit	ims and
-	program	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	1 1	.1 .	1	<u>c 1: · 1:</u>	1	1	1 11	1	1 (1	11
4:	To impa	art knowle	dge abou	t how to	approach	for dividi	ng a prob	lem into s	sub-proble	ems and s	olve the	problem
	m C.	(\mathbf{CO})										
	Ability	(CO): to develor	cimplan	aorithma	for orithm	notic and	logical pr	obloma or	d implan	ont thom	in 'C'	
C01.	Ability	to uevelop	simple a	tional hro	nohing it	anation on	d roourgio	objettis at	ations in	C'	шс.	
CO2:	Ability	to use arra	vs pointe	rs union	and struct	tures to de	velon alg	orithms a	nd progra	$\frac{C}{ms in C'}$		
CO3:	Abilitar	to decorre	ys, pointe	ablom int	and suite		theorize a	commista	nu progra	using 1:	vida ar 1	aanguar
004:	approac	to decomp	lose a pro	Joiem int	o functior	is and syr	imesize a	complete	program	using div	vide and	conquer
		$\frac{1}{(CO)}$ to P	rnoram	ne Outco	mes (PA)	Mannin	o (scale 1	· low 2 · M	Medium	3. High)		
CO/PO	PO01	PO02			PO05		PO07	PO08	PO09	PO10	PO11	PO12
C01	3	3	2	1	1	-	-	-	2	1	1	3
CO2	3	3	2	1	1	-	-	-	2	1	1	3
C03	3	3	3	1	1	-	-	-	2	1	1	3
<i>CO4</i>	3	3	3	1	1	-	-	-	2	1	1	3
	5		, č	· ·	1 1	1	1	1	-	· ·		1

Unit I

Introduction to Programming: Computer system, components of a computer system, computing environments, computer languages creating and running programs, Preprocessor, Compilation process, role of linker, idea of invocation and execution of a programme. Algorithms: Representation using flowcharts, pseudocode.

Introduction to C language: History of C, basic structure of C programs, process of compiling and running a C program, C tokens, keywords, identifiers, constants, strings, special symbols, variables, data types, I/O statements. Interconversion of variables. Operators and expressions: Operators, arithmetic, relational and logical, assignment operators, increment and decrement operators, bitwise and conditional operators, special operators, operator precedence and associativity, evaluation of expressions, type conversions in expressions. [10Hrs]

Unit II

Control structures: Decision statements; if and switch statement; Loop control statements: while, for and do while loops, jump statements, break, continue, goto statements. Arrays: Concepts, One dimensional array, declaration and initialization of one dimensional arrays, two dimensional arrays, initialization and accessing, multi dimensional arrays. Functions: User defined and built-in Functions, storage classes, Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference, Recursion. Strings: Arrays of characters, variable length character strings, inputting character strings, character library functions, string handling functions. [10Hrs] Unit III Pointers: Pointer basics, pointer arithmetic, pointers to pointers, generic pointers, array of pointers, functions returning pointers, Dynamic memory allocation. Pointers to functions. Pointers and Strings Structures and unions: Structure definition, initialization, accessing structures, nested structures, arrays of structures, structures and functions, self referential structures, unions, typedef, enumerations.

File handling: command line arguments, File modes, basic file operations read, write and append.

Scope and life of variables, multi-file programming.

C99 extensions. 'C' Standard Libraries: stdio.h, stdlib.h, assert.h, math.h, time.h, ctype.h, setjmp.h, string.h, stdarg.h, unistd.h

Unit IV

Basic Algorithms: Finding Factorial, Fibonacci series, Searching, Basic Sorting Algorithms- Bubble sort, Insertion sort and Selection sort. Find the square root of a number, array order reversal, reversal of a string, two-way merge sort, stacks, queues, single –link linked li st, Binary search tree. [10Hrs]

Textbooks:

- 1. How to solve it by Computer by R. G. Dromey, Prentice-Hall India EEE Series, 1982.
- 2. The C programming language by B W Kernighan and D M Ritchie, Pearson Education, 1988.

- 1. Programming Logic & Design by Tony Gaddis, Pearson, 2nd Ed. 2016.
- 2. Programming Logic and Design by Joyce Farrell, Cengage Learning, 2015.
- 3. Engineering Problem Solving With C by Delores M. Etter, Pearson, 2013.
- 4. Problem Solving and Program Design in C by Jeri R. Hanly and Elliot B. Koffman, Pearson, 2016.
- 5. Structure and Interpretation of Computer Programs by Harold Abelson and Gerald Sussman with Julie Sussman, MIT Press, 1985.
- 6. How to Design Programs by Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi, MIT Press, 2018.
- 7. ANSI/ISO 9899-1990, American National Standard for Programming Languages 'C' by American National Standards Institute, Information Technology Industry Council, 1990 (C89).
- 8. ISO/IEC 9899:1999. International Standard for Programming Languages C (ISO/IEC 9899) by American National Standards Institute, Information Technology Industry Council, 2000 (C99).
- 9. INCITS/ISO/IEC 9899-2011. American National Standard for Programming Languages 'C'by American National Standards Institute, Information Technology Industry Council, 2012 (C11).

PaperCo	de: ICT1	03	Paper	Electric	al Scienco	e					L	Г/Р	C
PaperID:	164103										3 -		3
Marking	Scheme:												
1.	Teachers Continuous Evaluation: 25 marks												
2.	Term end Theory Examinations: 75 marks												
Instructio	on for paj	per setter:	:										
1. There	should b	e 9 questic	ons in the	term end	examinat	ions quest	ion paper						
2. The f	first (1 st) c	question sl	hould be	compulse	ory and co	over the e	ntire sylla	abus.This	question	should be	e object	ive, s	single
line a	nswers or	short ans	wer type	question o	of total 15	marks.						-	
3. Apart	t from que	estion I w	hich is c	ompulsor	y, rest of	the paper	shall cor	isist of 4	units as p	per the sy	llabus.	Ever	y unit
shall	have two	questions	s coverin	g the cor	respondir	ig unit of	the sylla	ibus. Hov	vever, the	student	shall b	e ask	to to
Each	pt only of	he of the t	wo quest	ions in th	ie unit. In	dividual c	questions	may cont	ain upto :	5 sub-par	ts / sub-	ques	tions.
	Unit shan	i nave a m	arks werg	ginage of	15.	looming	autaamaa	of the or		non Thou	tondon	1/10	ual of
the au	lestions to	ale to be l	should b	e at the le	view the	nrescribe	d texthoo	bor the cc	Juise / pa	per. The	stanuare	1/10	
5. The r	eauireme	t of (scier	tific) cal	culators /	log-tables	$\frac{1}{3}$ / data – t	ables may	/ be specif	fied if rea	uired.			
Course O	biectives	:	,		8		5	1	1				
1:	To impa	art knowle	dge of the	e basics el	ectrical en	ngineering	<u>z</u> .						
2:	To impa	art knowle	dge of the	e working	of RLC of	circuits.							
3:	To impa	art basic kı	nowledge	about filt	ers and m	agnetic ci	rcuits.						
4:	To impa	art basic kı	nowledge	about ele	ctrical ma	achines.							
Course O	utcomes	(CO):											
CO1:	Ability	to understa	and and u	se Kirchp	ff's Laws	to solve r	esistive c	ircuit prol	blems.				
CO2:	Ability	to analyse	resistive,	inductive	e and capa	citive circ	cuits for tr	ansient a	nd steady	state sinu	soidal s	olutio	ons.
CO3:	Underst	and the fir	st order f	ilters and	magnetic	circuits.							
CO4:	Underst	and the de	sign of el	ectrical n	nachines.								
Course O	utcomes	(CO to Pr	ogramm	e Outcon	nes (PO)	Mapping	(scale 1:	low, 2: N	1edium, 3	: High			
CO/PO	P001	PO02	PO03	<i>PO04</i>	<i>PO05</i>	<i>P006</i>	PO07	<i>PO08</i>	P009	PO10	P011	I	' 012
<i>CO1</i>	3	3	3	3	3	-	-	-	1	1	1		2
<i>CO2</i>	3	3	3	3	3	-	-	-	1	1	1		2
<i>CO3</i>	3	3	3	3	3	-	-	-	1	1	1		2
<i>CO4</i>	3	3	3	3	3	-	-	-	1	1	1		2

Unit - I

DC Circuits: Passive circuit components, Basic laws of Electrical Engineering, Temperature Resistance Coefficients. voltage and current sources, Series and parallel circuits, power and energy, Kirchhoff's Laws, Nodal & Mesh Analysis, delta-star transformation, superposition theorem, Thevenin's theorem, Norton's theorem, maximum power transfer theorem. Time domain analysis of first Order RC & LC circuits.[10Hrs]

Unit – II

AC Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.

[10Hrs]

Unit - III

D. C. Generators & Motors: Principle of operation of Generators & Motors, Speed Control of shunt motors, Flux control, Rheostatic control, voltage control, Speed control of series motors.

A. C. Generators & Motors: Principle of operation, Revolving Magnetic field, Squirrel cage and phase wound rotor, Starting of Induction motors, Direct on line and Star Delta starters, Synchronous machines. [10Hrs]

Unit - IV:

Transformers: Construction and principle of operation, equivalent circuit, losses in transformers, regulation and efficiency. Autotransformer and three-phase transformer connections.

Measuring Instruments: Electromagnetism, Different Torques in Indicating instruments, Moving Iron Instruments: Construction & Principle, Attraction and Repulsion type; Moving Coil instruments: Permanent Magnet type; Dynamometer type Instruments.

[10Hrs]

Textbooks:

1. Electrical Engineering Fundamentals by Vincent Del Toro, PHI (India), 1989

- 1. An Introduction to Electrical Science by Adrian Waygood, Routledge, 2nd Ed. 2019.
- 2. Electrical Circuit Theory and Technology by John Bird, Elsevier, 2007.
- 3. Principles and Applications of Electrical Engineering by Giorgio Rizzoni, MacGraw-Hill, 2007.
- 4. *Electrical Engineering* by Allan R. Hambley, Prentice-Hall, 2011.
- 5. Hughes Electical & Electronic Technology by Edward Hughes revised by Hohn Wiley, Keith Brown and Ian McKenzie Smith, Pearson, 2016.
- 6. Electrical and Electronics Technology by E. Hughes, Pearson, 2010.

Basic Electrical Engineering by D.C. Kulshrestha, McGraw-Hill, 2009.
 Basic Electrical Engineering by D. P. Kothai and I.J. Nagrath, McGraw-Hill, 2010.

PaperC	ode: ICT	105	Paper	: Enginee	ering Me	chanics					L	T	:/ P	С
PaperID: 164105											3	-		3
	Marking	Scheme:												
	1. Teachers Continuous Evaluation: 25 marks													
	2. Term end Theory Examinations: 75 marks													
	Instruction for paper setter:													
	1. There	should be	9 questio	ons in the	term end	examinat	ions ques	tion pape	r					
	2. The f	irst (1 st) q	uestion s	hould be	compuls	ory and c	over the	entire syl	llabus.Th	is questio	on sho	ould be	objec	tive,
	single	line answ	ers or sho	ort answe	r type que	estion of t	otal 15 m	arks.						
	3. Apart	from ques	stion I w	hich is co	ompulsor	y, rest of	the paper	shall con	nsist of 4	units as	per th	e syllab	us. E	very
	unit s	hall have	two ques	stions cov	vering the	e corresp	onding ur	if of the	syllabus	. Howev	er, the	studen	t sha	II be
	asked	to attemp	t only on	e of the l	two quest	ions in th	ne unit. Ir	idividual	questions	s may co	ntain i	upto 5 s	ub-p	arts /
	sub-q	uestions. E	ach Unit	snall nav	e a mark	s weighta	ge of 15.	utaamaa	of the ear		on Th	actord	nd /	laval
	+. The q	questions a	to be ack	ad should	l bo ot the	level of	the procer	ibod toxtl	of the cot	irse / pap	er. In	e standa	iiu /	level
	5 The re	equirement	t of (scier	tific) cal	culators /	log-table	s / data – 1	tables ma	v he sneci	ified if re	anired	1		
	Course O	biectives:	(iog taolo	s, aata .		<i>j</i> ee spee		401100			
1:		To impart	knowled	ge to solv	e probler	ns pertair	ing to for	ce system	ns, equilib	orium and	l distri	buted sy	/stem	IS.
2:		To impart	knowled	lge to solv	e probler	ns of frict	tion and e	ngineerin	g trusses.					
3:		To impart	knowled	lge to dea	l with the	problems	of kinen	natics and	kinetics	of particl	e			
4:		To impart	knowled	lge to dea	l with the	problems	s of kinen	natics and	kinetics	of rigid b	odies.			
	Course O	utcomes (CO):											
CO1:		Ability to	solve pro	blems pe	rtaining to	o force sy	stems, eq	uilibrium	and distr	ibuted sy	stems.			
CO2:		Ability to	solve pro	blems of	friction a	nd engine	eering trus	sses.						
CO3:		Ability to	deal with	the prob	lems of k	inematics	and kinet	tics of par	rticle					
CO4:		Ability to	deal with	n the prob	lems of k	inematics	and kine	tics of rig	id bodies					
	Course O	utcomes (CO) to P	rogramn	ne Outcon	mes (PO)	Mappin	g (scale 1	: low, 2:	Medium	, 3: H	igh)		
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO 07	PO08	PO09	P010		PO11	P	012
C01	3	3	3	3	2	-	-	-	1	1		1		2
<i>CO2</i>	3	3	3	3	2	-	-	-	1	1		1		2
<i>CO3</i>	3	3	3	3	2	-	-	-	1	1		1		2
<i>CO</i> 4	3	3	3	3	2	-	-	-	1	1		1		2

Unit I

Force System: Introduction, force, principle of transmissibility of force, resultant of a force system, resolution of a force, moment of force about a line, Varigon's theorem, couple, resolution of force into force and a couple, properties of couple and their application to engineering problems.

Equilibrium: Force body diagram, equations of equilibrium and their applications to engineering problems, equilibrium of two force and three force members.

Distributed Forces: Determination of center of gravity, center of mass and centroid by direct integration and by the method of composite bodies, mass moment of inertia and area moment of inertia by direct integration and composite bodies method, radius of gyration, parallel axis theorem, polar moment of inertial.[10Hrs]

Unit II

Structure: Plane truss, perfect and imperfect truss, assumption in the truss analysis, analysis of perfect plane trusses by the method of joints, method of section and graphical method.

Friction: Static and Kinetic friction, laws of dry friction, co-efficient of friction, angle of friction, angle of repose, cone of friction, frictional lock, friction in flat pivot and collar bearing, friction in flat belts. [10Hrs]

Unit III

Kinematics of Particles: Rectilinear motion, plane curvilinear motion, rectangular coordinates, normal and tangential coordinates. Kinetics of Particles: Equation of motion, rectilinear motion and curvilinear motion, work-energy equation, conservation of energy, concept of impulse and momentum, conservation of momentum, impact of bodies, co-efficient of restitution, loss of energy during impact. [10Hrs]

Unit IV

Kinematics of Rigid Bodies: Concept of rigid body, types of rigid body motion, absolute motion, introduction to relative velocity, relative acceleration (Corioli's component excluded) and instantaneous center of zero velocity, Velocity and acceleration.

Kinetics of Rigid Bodies: Equation of motion, translatory motion and fixed axis rotation, application of work energy principles to rigid bodies conservation of energy.

Beam: Introduction, types of loading, methods for the reactions of a beam, space diagram, types of end supports, beams subjected to couple. [10Hrs]

Textbooks:

1. Engineering Mechanics by A.K.Tayal, Umesh Publications.

1. 'Engineering Mechanics' by K. L. Kumar, Tata Mc-Graw Hill

- 'Engineering Mechanics' by S. Timoshenko, D. H. Young, J. V. Rao, Tata Mc-Graw Hill
 'Engineering Mechanics-Statics and Dynamics' by Irwing H. Shames, PHI.
- 4. 'Engineering Mechanics' by Basudev Bhattacharya, Oxford Higher Education.

	, reen	Diocrici		ignicer	116, 00	C1, Ou	iu 000	inta onn	Si iiai	upiusu	iu O	nver	Sity
PaperCo	de: HS10	7	Paper	: Commu	nication	Skills - I					L	T/P	C
PaperID:	99107										3	-	3
Marking	Scheme:												
1.	Teachers	Continuo	ıs Evalua	tion: 25 n	narks								
2.	Term end	Theory E	xaminatio	ons: 75 m	arks								
Instructio	on for pap	per setter:											
1. There	should b	e 9 questic	ons in the	term-end	examinat	ions quest	tion paper	•					
2. The f	first unit	will be co	ompulsor	y and co	ver the e	ntire sylla	abus. Thi	s question	n will ha	ve Five s	sub-pa	rts, an	id the
stude	nts will b	e required	l to answ	er any TI	HREE pai	rts of 5 m	arks each	n. This un	it will ha	ve a tota	l weig	htage	of 15
mark	s.												
3. Apart	from un	it 1 which	is comp	ulsory, th	e rest of	the paper	shall con	sist of 4	units as p	er the sy	llabus	Ever	y unit
shall	have two	question	s coverin	g the cor	respondir	ig unit of	the sylla	ıbus. Hov	vever, the	e student	shall	be ask	ted to
attem	pt only or	ne of the t	wo quest	ions in th	e unit. In	dividual q	uestions i	may conta	ain up to :	5 sub-par	ts / su	o-ques	tions.
Each	Unit shal	l have a m	arks weig	ghtage of	15.				,	-			
4. The q	uestions a	are to be f	ramed ke	eping in v	view the l	earning of	utcomes c	of the cour	rse/paper.	The stan	dard /	level	of the
quest	ions to be	asked sho	uld be at	the level	of the pre	scribed te	xtbook.						
	Tabala	•1			an aflama		1	41. a. e. a. a. a. b.					
1:	To nelp	them und	erstand th	ie structur	es of lang	uage, and	build up		ulary.				
2:	To enna	ince langu	age prono	lea of w	i commun	munication co	mpetence	<i>.</i>					
3.	To unde	lon the off	ac princip	fusing la	nguaga fa	numeatio	II.	with alar					
4.	To he of	alop me en			inguage 10		ruiposes	s with clai	ffantisvals				
5.	To be at	lop tha th	carry appr	eclate the	ing of int		1 commu	al inputs e	ffootively	/.			
Course O	utcomes	$\frac{1000}{(CO)}$		inuerstand	ing of m	erpersona			nectively	•			
	Ability	to underst	and the be	eric struct	ure of lan	anade							
CO1:	Ability	to commu	nicate eff	ectively in	n writing	guage							
CO2:	Ability	to present	their idea	s effectiv	elv in nro	fessional	and demai	nding situ	ations				
CO4·	Ability	to internre	t texts an	d comprel	hend the e	xtended d	liscourse	iung situ	ations.				
Course O	utcomes	(CO to Pi	ogramm	e Outcor	nes (PO)	Mapping	(scale 1:	low, 2: M	ledium. 3	: High			
CO/PO	P001	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	P010	PO	1 1	2012
C01	-	-	-	-	-	-	-	-	3	3	-		3
CO2	-	-	-	-	-	-	-	-	3	3	-		3
<i>CO3</i>	-	-	-	-	-	-	-	-	3	3	-		3
C04	_	_	_	-	_	_	_	_	3	3	-		3

Unit I

Basic Language Efficiency 1: Parts of Speech, Sentence Structure, Subject-Verb Agreement, Vocabulary, Common Errors, [8Hrs]

Unit II

Basic Language Efficiency 2: Writing Skills: T	Types of Writing, Paragraph writing, Paraphrasing, Summarizing, Précis Writing
	[8Hrs]
Unit III	

Formal Written Communication: Meetings – Agenda and Minutes, Press release, Letter writing, Notice, Memorandum, E-mails [8Hrs]

Unit IV

Appreciating written Texts for comprehension ability:

- 1. Steven Spielberg's Speech at Harvard Commencement 2016(<u>https://www.youtube.com/watch?v=TYtoDunfu00</u>)
- 2. Lecture by Johan Rockstrom: Let the Environment Guide our Development http://www.ted.com/talks/johan_rockstrom_let_the_environment_guide_our_development [8Hrs]

Textbooks:

1. High English Grammar and Composition by Wren, P.C. & Martin H., S.Chand & Company Ltd, New Delhi.

2. Technical Communication: Principles & Practice by Meenakshi Raman, New Delhi: Oxford University Press

References:

- 1. Be Grammar Ready: The Ultimate Guide to English Grammar by John Eastwood, New Delhi, Oxford University Press, 2020.
- 2. Communication Skills: A Workbook by Sanjay Kumar & Pushp Lata, New Delhi, Oxford University Press, 2018.
- 3. Basic Technical Communication by Kavita Tyagi & Padma Mishra, New Delhi, PHI Learning, 2012.

4. Advanced Technical Communication by Kavita Tyagi & Padma Mishra, New Delhi, PHI Learning, 2011.

				0	0.				0	1			
PaperCo	de: BS109)	Paper	: Enginee	ring Che	mistry - l					L	Г/Р	С
PaperID:	99109										3 .	-	3
Marking	Scheme:												
1.	Teachers	Continuou	is Evalua	tion: 25 n	narks								
2.	Term end	Theory E	xaminati	ons: 75 m	arks								
Instructio	on for pap	per setter:	:										
1. There	should b	e 9 questic	ons in the	term-end	examinat	ions ques	tion paper	ſ.					
2. The f	irst unit	will be co	ompulsor	y and co	ver the e	ntire sylla	abus. Thi	s question	n will ha	ve Five s	sub-part	s, an	d the
stude	nts will b	e required	l to answ	er any TI	HREE par	rts of 5 m	narks each	n. This un	it will ha	ve a tota	l weigh	tage	of 15
3 Apart	from uni	t 1 which	is comp	ulcory th	e rest of	the noner	shall con	sist of A	unite as r	or the sv	llabue	Ever	u unit
5. Apart	have two	question	coverin	a the cor	respondir	a unit of	the culls	bue Hov	units as p vever the	student	shall h	e ack	y unit
attem	nt only or	a of the t	wo quest	ions in th	e unit In	dividual a	une syne	may contr	vever, the	5 sub par	te / sub		tions
Each	Unit chall	have a m	arke wei	ions in ui ihtage of	c unit. m 15	uivitutai q	[uestions]	may conta	un up to .	suo-pai	15 / 540	-ques	tions.
A The o	Unit Shan	re to be f	ramed ke	ening in s	iow the l	earning of	utcomes	of the cour	rse/naner	The stan	dard /1	ovol (of the
The quest	ions to be	asked sho	uld be at	the level	of the n re	scribed te	vtbook	n me cou	rse/paper.	The stan	iuaru / i		Ji the
5 The r	equirement	t of (scier	tific) cal	ulators /	log_tables	/ data – t	ables may	he specif	fied if requ	uired			
Course O	hiectives	•	lille) eur	culators	iog tubiet	, autu t	uores may	oe speen	ilea il req	an ea.			
1.	To imp	• art knowle	dge abou	t understa	nding and	Imodeling	atomic s	structure a	nd chemi	cal bondi	nσ		
2.	To impe	art knowle	dge abou	t understa	nding and	1 modelin	g Thermo	chemistry	and Read	tion Kine	etics		
3:	To impa	rt knowle	dge abou	t understa	nding and	modeling	g organic	compound	d structure	e and read	ctions.		
4:	To impa	rt knowle	dge about	understa	nding and	modeling	2 Stereoch	emistry.					
Course O	utcomes	(CO):	0		0		2	<u> </u>					
C01:	Ability	to understa	and and n	nodel ator	nic struct	ure and ch	emical bo	onding.					
CO2:	Ability	to understa	and and n	nodel The	rmochem	istry and l	Reaction 1	Kinetics.					
CO3:	Ability	to understa	and and n	nodel orga	anic comp	ound stru	cture and	reactions					
CO4:	Ability	to understa	and and m	nodel Ster	eochemis	try.							
Course O	utcomes	(CO to Pr	ogramm	e Outcor	nes (PO)	Mapping	(scale 1:	low, 2: N	1edium, 3	: High			
CO/PO	PO01	PO02	PO03	PO04	<i>PO05</i>	PO06	PO07	<i>PO08</i>	P009	P010	P011	I F	?012
C01	2	2	3	3	2	-	-	-	1	1	-		1
<i>CO2</i>	2	2	3	3	2	-	-	-	1	1	-		1
<i>CO3</i>	2	2	3	3	2	-	-	-	1	1	-		1
<i>CO4</i>	2	2	3	3	2	-	-	-	1	1	-		1

Unit I

Atomic Structure: Introduction to wave mechanics, the Schrödinger equation as applied to hydrogen atom, origin of quantum numbers, Long form of periodic table on the basis of Electronic configuration s, p, d, f block elements periodic trends, Ionization potential, atomic and ionic radii electron affinity & electro-negativity.

Chemical Bonding: Ionic bond, energy changes, lattice energy Born Haber Cycle, Covalent bond-energy changes, Potential energy curve for H2 molecule, characteristics of covalent compound, co-ordinate bond-Werner's Theory, effective atomic numbers, A hybridization and resonance, Valence Shell Electron Repulsion theory (VSEPR), Discussion of structures of H2O, NH3, BrF3, SiF4, Molecular orbital theory, Linear combination of atomic orbitals (LCAO) method. Structure of simple homo nuclear diatomic molecule like H2, N2, O2, F2.

[12Hrs]

Unit II

Thermochemistry: Hess's Law, heat of reaction, effect of temperature on heat of reaction at constant pressure (Kirchhoff's Equation) heat to dilution, heat of hydration, heat of neutralization and heat of combustion, Flame temperature. Reaction Kinetics: Significance of rate law and rate equations, order and molecularity, Determinations of order of simple reactions-experimental method, Equilibrium constant and reaction rates -Lindermann, collision and activated complex theories, complex reactions of 1st order characteristics of consecutive, reversible and parallel reactions-Steady state and non-steady state approach. [10 Hrs]

Unit III

Basic concepts of Organics: Inductive, electromeric, mesomeric and hyperconjugative effects. Stability of reaction intermediates. Electrophiles and nucleophiles, concepts of acids and bases. Arrhenius, Lowry-Bronsted and Lewis theory of acids and bases (HSAB), Carbon acids (active methylene groups), super acids. Bonds weaker than covalent bond: Hydrogen bonding - nature, types, stability and effects. IUPAC Nomenclature.[8Hrs]

Unit IV

Stereochemistry: Classification of stereoisomers, diastereomers, Separation of enantiomers. Absolute configuration (R and S), Projection formulae. Stereochemistry of compounds containing two asymmetric C-atoms. Elements of symmetry - center, plane and axis of symmetry, Conformations: Conformations around a C-C bond in acyclic and cyclic compounds. [10Hrs]

Textbooks / References:

1. Engineering Chemistry (16th Edition) Jain, Jain, Dhanpat Rai Publishing Company, 2013.

2. Textbook of Engineering Chemistry by Jaya Shree Anireddy, Wiley, 2017

3. Engineering Chemistry by E.R. Nagarajan and S. Ramalingam, Wiley, 2017.

by real broaden brighteering, eeer, eard ocenta entantapractata erat	B	. Tech	Bioch	emical	Engi	neering,	USCT,	Guru	Gobind	Singh	Indra	prastha	Universit	v
--	---	--------	-------	--------	------	----------	-------	------	--------	-------	-------	---------	-----------	---

r	3. Tech	Biocher	nical Ei	ngineer	ing, US	CI, Gu	iru Gob	oind Sin	gh Indi	aprasti	na U	niver	sity
PaperCo	de: BS111	1	Paper	: Enginee	ring Mat	hematics	– I				L	T/P	C
PaperID:	99111				-						4	-	4
Marking	Scheme:												
1.	Teachers	Continuo	us Evalua	tion: 25 n	narks								
2.	Term end	Theory E	xaminati	ons: 75 m	arks								
Instructio	on for pap	per setter	:										
1. There	should b	e 9 questio	ons in the	term end	examinat	ions ques	tion paper						
2. The f	irst (1 st) c	uestion s	hould be	compulse	ory and co	over the e	ntire sylla	abus.This	question	should be	e obje	ctive, s	single
line a	nswers or	short ans	wer type	question of	of total 15	marks.						_	
3. Apart	from que	estion 1 w	hich is c	ompulsor	y, rest of	the paper	shall con	isist of 4	units as p	per the sy	llabus	5. Ever	y unit
shall	have two	question	s coverin	g the cor	respondir	ig unit of	the sylla	abus. Hov	vever, the	student	shall	be ask	ed to
attem	pt only of	ne of the	wo quest	ions in th	ie unit. In	dividual of	questions	may cont	ain upto :	5 sub-par	ts / su	b-ques	tions.
Each	Unit shall	I nave a m	arks weig	gntage of	15.	1		64		T1	4 1	. 1 / 1	
4. The c	uestions a	are to be i	ramed Ke	eping in	view the	learning	outcomes	s of the co	ourse / paj	per. The s	standa	ira / le	vel of
5 The r	equirement	t of (scient	should b	culators /	log_tables	presente / data _ t	ables may	K. 7 he specif	fied if requ	uired			
Course O	hiectives	•	nine) cui	culutors	iog tublet	, aata t	uores may	, be speen	lieu II Ieq	un eu.			
1:	To unde	erstand use	series, di	ifferential	and integ	ral metho	ds to solv	e formula	ted engin	eering pro	oblem	s.	
2:	To unde	erstand use	Ordinar	y Differen	tial Equat	tions to so	olve formu	lated eng	ineering p	oroblems.			
3:	To unde	erstand use	e linear al	gebrato so	olve form	ulated eng	ineering p	problems.	01				
4:	To unde	erstand use	e vector c	alculusto	solve form	nulated er	ngineering	g problem	8.				
Course O	utcomes	(CO):											
CO1:	Ability	to use seri	es, differe	ential and	integral m	nethods to	solve for	mulated e	ngineerin	g problen	ns.		
CO2:	Ability	to use Ord	inary Dif	ferential H	Equations	to solve f	ormulated	1 engineer	ing probl	ems.			
CO3:	Ability	to use line	ar algebra	ato solve f	formulated	d engineer	ring probl	ems.					
CO4:	Ability	to use vec	tor calcul	usto solve	e formulat	ed engine	ering prol	olems.					
Course O	utcomes	(CO to Pi	ogramm	e Outcor	nes (PO)	Mapping	g (scale 1:	low, 2: N	ledium, 3	: High			
CO/PO	P001	PO02	PO03	PO04	P005	<i>P006</i>	PO07	P008	P009	P010	PO.	11 F	' 012
C01	2	3	3	3	1	-	-	-	-	-	1	2	
<i>CO2</i>	2	3	3	3	1	-	-	-	-	-	2	2	
<i>CO3</i>	2	3	3	3	1	-	-	-	-	-	2	2	
$\overline{CO4}$	2	3	3	3	1		_	_			2	2	1

Unit I

Partial derivatives, Chain rule, Differentiation of Implicit functions, Exact differentials.Maxima, Minima and saddle points, Method of Lagrange multipliers. Differentiation underIntegral sign, Jacobians and transformations of coordinates.

[8Hrs]

Unit II

Ordinary Differential Equations (ODEs): Basic Concepts. Geometric Meaning of y'= f(x, y). Direction Fields, Euler's Method, Separable ODEs. Exact ODEs. Integrating Factors, Linear ODEs. Bernoulli Equation. Population Dynamics, Orthogonal Trajectories. Homogeneous Linear ODEs with Constant Coefficients. Differential Operators. Modeling of Free Oscillations of a Mass-Spring System, Euler-Cauchy Equations. Wronskian, Nonhomogeneous ODEs, Solution by Variation of Parameters.

Power Series Method for solution of ODEs: Legendre's Equation. Legendre Polynomials, Bessel's Equation, Bessels's functions Jn(x) and Yn(x). Gamma Function [12Hrs]

Unit III

Linear Algebra: Matrices and Determinants, Gauss Elimination, Linear Independence. Rank of a Matrix. Vector Space. Solutions of Linear Systems and concept of Existence, Uniqueness, Determinants. Cramer's Rule, Gauss-Jordan Elimination. The Matrix Eigenvalue Problem.

Determining Eigenvalues and Eigenvectors, Symmetric, Skew-Symmetric, and Orthogonal Matrices. Eigenbases. Diagonalization. [10Hrs] Quadratic Forms.Cayley – Hamilton Theorem (without proof)

Unit IV

Vector Calculus: Vector and Scalar Functions and Their Fields. Derivatives, Curves. Arc Length. Curvature. Torsion, Gradient of a Scalar Field. Directional Derivative, Divergence of a Vector Field, Curl of a Vector Field, Line Integrals, Path Independence of Line Integrals, Double Integrals, Green's Theorem in the Plane, Surfaces for Surface Integrals, Surface Integrals, Triple Integrals, Stokes Theorem. Divergence Theorem of Gauss.

[10Hrs]

Textbooks:

- 1. Advanced Engineering Mathematics by Erwin Kreyszig, John Wiley, 10th Ed., 2011.
- 2. Mathematical Methods for Physics and Engineering, by K. F. Riley, M. P. Hobson and S. J. Bence, CUP, 2013. (for Unit I)

- 1. Engineering Mathematics by K.A. Stroud withDexter J. Booth, Macmillan, 2020.
- Advanced Engineering Mathematics by Larry Turyn, Taylor and Francis, 2014. 2.
- 3. Advanced Engineering Mathematics by Dennis G. Zill, Jones & Bartlett Learning, 2018.

- Advanced Engineering Mathematics with MATLAB by Dean G. Duffy, Taylor and Francis, 2017.
 Advanced Engineering Mathematics by Merle C. Potter, Jack L. Lessing, and Edward F. Aboufadel, Springer (Switzerland), 2019.

				U	0				0	· ·			-
PaperCo	de: BS11.	3	Paper	: Enginee	ring Phy	sics – I					L	T/P	C
PaperID:	99113										3	-	3
Marking	Scheme:												
1.	Teachers	Continuou	us Evalua	tion: 25 n	narks								
2.	Term end	l Theory E	xaminati	ons: 75 m	arks								
Instructio	on for pa	per setter:	•										
1. There	should be	9 questions	in the term	end exam	inations qu	estion pape	er.						
2. The fi	rst (1 st) qu	estion shou	ld be com	pulsory and	d cover the	entire syll	abus.This	question sl	nould be ol	ojective, si	ngle li	ne ansv	vers or
short a	answer type	e question c	of total 15 i	narks.	6.4			•,	a 11.		•,		
3. Apart	from ques	tion I which	th is comp	ulsory, res	t of the paj	ber shall co	onsist of 4	units as pe	er the sylla	bus. Every	unit s	shall ha	ve two
questi	ons in the	ing the con unit Indivi	dual quest	ions may c	ontain unt	5 Sub-nai	ts / sub-au	estions E	e askeu io ach Unit sh	all have a	marks	weight	tage of
15.	ons in the	unit. marvi	duai quest	ions may c	ontain upt	5 5 Suo-pu	137 3ub-qu	iestions. La			marks	weigin	uge of
4. The qu	uestions ar	e to be fran	ned keepin	g in view t	he learning	outcomes	of the cou	rse / paper.	The stand	lard / leve	el of ti	he que	stions
to be	asked sho	ould be at t	he level o	of the pres	scribed te	xtbook.		1 1				1	
5. The re	quirement	of (scientifi	ic) calculat	ors / log-ta	bles / data	– tables ma	y be specif	ied if requi	red.				
Course O	bjectives	:											
1:	To unde	erstand the	rmodyna	mic princ	iples.								
2:	To unde	erstand and	d model o	scillation	s and wav	es.							
3:	To unde	erstand and	d model ii	nterferenc	e, diffract	tion and p	olarizatio	n phenom	enon.				
4:	To unde	erstand and	d apprecia	te relativ	istic syste	ms and La	asers.						
Course O	utcomes	(CO):											
CO1:	Ability	to apply th	iermodyn	amic prin	ciples to s	olution of	f engineer	ing proble	ems.				
CO2:	Ability	to understa	and and n	nodel osci	llations a	nd waves.							
CO3:	Ability	to understa	and and n	nodel inter	rference, o	liffractior	n and pola	rization p	henomen	on.			
CO4:	Ability	to underst	and and a	ppreciate	relativisti	c systems	and Lase	rs.					
Course O	utcomes	(CO to Pi	rogramm	e Outcor	nes (PO)	Mapping	(scale 1:	low, 2: N	ledium, 3	: High			
CO/PO	P001	PO02	PO03	PO04	<i>PO05</i>	<i>PO06</i>	PO07	<i>PO08</i>	P009	P010	PO	11 I	2012
C01	2	2	3	3	2	-	-	-	1	1	-		2
<i>CO2</i>	2	2	3	3	2	-	-	-	1	1	-		2
СО3	2	2	3	3	2	-	-	-	1	1	-		2
<i>CO4</i>	2	2	3	3	2	-	-	-	1	1	-		2

Unit I

Introduction to Thermodynamics: Fundamental Ideas of Thermodynamics, The Continuum Model, The Concept of a "System", "State", "Equilibrium", "Process". Equations of state, Heat, Zeroth Law of Thermodynamics, Work, first and second laws of thermodynamics, entropy [8Hrs]

Unit II

Waves and Oscillations: Wave motion, simple harmonic motion, wave equation, superposition principle. Introduction to Electromagnetic Theory: Maxwell's equations. work done by the electromagnetic field, Poynting's theorem, Momentum, Angular momentum in electromagnetic fields, Electromagnetic waves: the wave equation, plane electromagnetic waves, energy carried by electromagnetic waves [8Hrs]

Unit III

Interference: Interference by division of wave front (Young's double slit experiment, Fresnel's biprism), interference by division of amplitude (thin films, Newton's rings, Michelson's interferometer), Coherence and coherent sources

Diffraction: Fraunhofer and Fresnel diffraction; Fraunhofer diffraction for Single slit, double slit, and N-slit (diffraction grating), Fraunhofer diffraction from a circular aperture, resolving power and dispersive power of a grating, Rayleigh criterion, resolving power of optical instruments

Polarization: Introduction to polarization, Brewster's law, Malu's law, Nicol prism, double refraction, quarter-wave and half-wave plates, optical activity, specific rotation, Laurent half shade polarimeter. [12Hrs]

Unit IV

Theory of relativity: The Michelson-Morley Experiment and the speed of light; Absolute and Inertial frames of reference, Galilean transformations, the postulates of the special theory of relativity, Lorentz transformations, time dilation, length contraction, velocity addition, mass energy equivalence. Invariance of Maxwell's equations under Lorentz Transformation.

Introduction to Laser Physics: Introduction, coherence, Einstein A and B coefficients, population inversion, basic principle and operation of a laser, the He-Ne laser and the Ruby laser [12Hrs]

Textbooks:

- *Concepts of Modern Physics (SIE)* by Arthur Beiser, Shobhit Mahajan, and S. Rai Choudhury, McGraw-Hill, 2017. *Physics for Scientists and Engineers* by Raymond A. Serway and John W. Jewett, 9th Edition, Cengage, 2017 1.
- 2.

- 1. Modern Physics by Kenneth S. Krane, Wiley, 2020.
- Principles of Physics by Robert Resnick, Jearl Walker and David Halliday, Wiley, 2015.
- 2. 3. Optics by Ajoy Ghatak, McGraw Hill, 2020.

100 C				-	-				-	_			1
PaperCo	de: LLB1	15	Paper:	Indian (Constituti	ion					L	T/P	C
PaperID:	99115										2	-	2
Marking	Scheme:												
1.	Teachers	Continuou	ıs Evalua	tion: 25 n	narks								
2.	Term end	Theory E	xaminatio	ons: 75 m	arks								
3.	This is an	NUES pa	per, henc	e all exan	ninations	to be cond	lucted by	the conce	rned teach	ner.			
Instructio	on for pap	per setter	(Maximu	ım Mark	s for Teri	m End Ex	aminatio	ons: 75):					
1. There	should b	e 9 questic	ons in the	term end	examinati	ions quest	ion paper						
2. The f	irst (1 st) c	question sl	nould be	compulso	ory and co	over the en	ntire sylla	bus.This	question	should be	e obje	ctive, s	ingle
line a	nswers or	short ans	wer type	question of	of total 15	marks.							
3. Apart	from que	estion 1 w	hich is c	ompulsor	y, rest of	the paper	shall cor	nsist of 4	units as p	er the sy	llabus	. Every	y unit
shall	have two	questions	s coverin	g the cor	respondir	ng unit of	the sylla	bus. Hov	vever, the	student	shall	be ask	ed to
attem	pt only or	ne of the t	wo quest	ions in th	e unit. In	dividual c	questions	may cont	ain upto 5	5 sub-part	ts / su	b-ques	tions.
Each	Unit shall	l have a m	arks weig	ghtage of	15.		-	-	-	-		-	
4. The q	uestions a	are to be fr	amed kee	ping in v	view the le	arning ou	tcomes of	f the cours	se / paper.				
Course O	bjectives	:											
1:	To crea	te awarene	ss among	g students	about the	Indian Co	onstitution	1					
2:	To crea	te conscio	usness a	mong stu	dents abo	ut democ	ratic prin	ciples and	d enshrine	ed in the	Cons	titution	of
	India			e				1					
Course O	utcomes	(CO):											
CO1:	To unde	erstand ins	titutional	mechanis	sm and fu	ndamental	l values er	nshrined i	n the Con	stitution o	of Indi	a	
CO2:	To unde	erstand the	inter-rela	ation betw	veen Centr	re and Sta	te Govern	nment					
CO3:	To unde	erstand Fu	ndamenta	l Rights a	and Dutie	s							
CO4:	To unde	erstand the	structure	and funct	tions of ju	idicial sys	tems in th	e country	.				
Course O	utcomes	(CO to Pr	ogramm	e Outcon	nes (PO)	Mapping	(scale 1:	low, 2: M	ledium, 3	: High			
CO/PO	P001	PO02	<i>PO03</i>	<i>PO04</i>	<i>PO05</i>	<i>PO06</i>	PO07	P008	<i>PO09</i>	P010	PO	11 F	<i>'012</i>
<i>CO1</i>	-	-	-	-	-	3	-	2	-	-	-		1
<i>CO2</i>	-	-	-	-	-	3	-	2	-	-	-		1
<i>CO3</i>	-	-	-	-	-	3	-	2	-	-	-		1
<i>CO4</i>	-	-	-	-	-	3	-	2	-	-	-		1

Unit I

Introduction to Constitution of India: Definition, Source and Framing of the Constitution of India.Salient Features of the Indian Constitution. [6Hrs]

Unit II

Fundamental Rights and Duties: Rights To Equality (Article 14-18).Rights to Freedom (Article 19-22).Right against Exploitation (Article 23-24).Rights to Religion and Cultural and Educational Rights of Minorities(Article 25- 30). The Directive Principles of State Policy – Its significance and application. Fundamental Duties – Necessary obligations and its nature, legal status and significance [6Hrs]

Unit III

Executives and Judiciary: Office of President, Vice President and Governor: Power and Functions, Parliament, EmergencyProvisions, President Rule; Union Judiciary: Appointment of Judges, Jurisdiction of the Supreme Court, State Judiciary: Power and functions, Writ Jurisdiction [6Hrs]

Unit IV

Centre- States Relation: Is Indian Constitution Federal in Nature, Legislative relations between Union and States, Administrative Relations between Union and States, Financial Relations between Union and States [6Hrs]

Textbooks:

1. Constitutional Law of India by J.N Pandey, Central Law Publication, 2018.

2. Introduction to the Indian Constitution of Indiaby D.D. Basu, PHI, New Delhi, 2021

3. The Constitution of India by P.M. Bakshi, Universal Law Publishing Co., 2020.

References:

1. Indian Constitutional Law by M.P. Jain, Lexis Nexis, 2013

2. Constitution of India by V.N. Shukla, Eastern Book Agency, 2014

B. Tech Biochemical Engineering, USCT, Guru Gobind Singh Indraprastha University												
PaperC	Code: ICT151	Paper: Pr	ogramming for Pr	blem Solving Lab.	L	Р	C					
PaperII	D: 164151				-	2	1					
Teachers Continuous Evaluation: 40 marks Term End Examinations: 60 Marks												
Instruc	Instructions:											
1.	1. The course objectives and course outcomes are identical to that of ICT101 (Programming for Problem Solving)											
as this is the practical component of the corresponding theory paper.												
2.	 The practical list shall be notified by the teacher in the first week of the class commencement. 											

PaperCo	de: ICT1	53	Paper	Enginee	ring Gra	phics-I					L	Р		С
PaperID:	164153										-	2		1
Marking	Scheme:													
1.	Teachers	Continuou	ıs Evalua	tion: 40 n	narks									
2.	Term end	Theory E	xaminati	ons: 60 m	arks									
Course O	bjectives	:												
1:	The stu	dents will	l learn th	e introdu	ction of	Engineeri	ng graphi	ics, vario	us equipr	nent used	l, vari	ous	scale	s,
	dimensi	ons and B	IS codes	used while	e making	drawings	for variou	is streams	of engine	eering dis	ciplin	es.		
2:	The stue	dents will	learn theo	ory of pro	jections a	nd project	ion of poi	ints.						
3:	The stud	dents will	learn pro	jection of	lines and	projection	n of plane	s.						
4:	The stud	dents will	learn the	projectior	n of solid a	and develo	opment of	f surfaces						
Course O	utcomes	(CO):												
CO1:	To unde	erstand the	theory of	f projectic	ons and pr	ojection o	of points.							
CO2:	Ability	to do line j	projectio	18.										
CO3:	Ability	to do plan	e projecti	ons.										
CO4:	Ability	to do solid	projectio	ons and de	evelopmer	nt of surfa	ces							
Course O	utcomes	(CO to Pr	ogramm	e Outcon	nes (PO)	Mapping	(scale 1:	low, 2: N	ledium, 3	: High				
CO/PO	PO01	PO02	PO03	<i>PO04</i>	PO05	<i>PO06</i>	PO07	<i>PO08</i>	P009	P010	POI	1	POI	2
C01	3	3	3	3	2	-	-	-	1	2	1		2	
<i>CO2</i>	3	3	3	3	2	-	-	-	1	2	1		2	
СО3	3	3	3	3	2	-	-	-	1	2	1		2	
<i>CO4</i>	3	3	3	3	2	-	-	-	1	2	1		2	

Unit I

Introduction: Engineering Graphics/Technical Drawing, Introduction to drawing equipments and use of instruments, Conventions in drawing practice. Types of lines and their uses, BIS codes for lines, technical lettering as per BIS codes, Introduction to dimensioning, Types, Concepts of scale drawing, Types of scales

Theory of Projections: Theory of projections, Perspective, Orthographic, System of orthographic projection: in reference to quadrants, Projection of Points, Projection in different quadrants, Projection of point on auxiliary planes. Distance between two points, Illustration through simple problems.

Unit II

Projection of Lines: Line Parallel to both H.P. and V.P., Parallel to one and inclined to other, Other typical cases: three view projection of straight lines, true length and angle orientation of straight line: rotation method, Trapezoidal method and auxiliary plane method, traces of line.

Unit III

Projection of Planes: Projection of Planes Parallel to one and perpendicular to other, Perpendicular to one and inclined to other, Inclined to both reference planes, Plane oblique to reference planes, traces of planes.

Planes Other than the Reference Planes: Introduction of other planes (perpendicular and oblique), their traces, inclinations etc., projections of points and lines lying in the planes, conversion of oblique plane into auxiliary plane and solution of related problems.

Unit IV

Projection of Solids: Projection of solids in first or third quadrant, Axis parallel to one and perpendicular to other, Axis parallel to one inclined to other, Axis inclined to both the principal plane, Axis perpendicular to profile plane and parallel to both H.P. and V.P., Visible and invisible details in the projection, Use of rotation and auxiliary plane method. Development of Surface: Purpose of development, Parallel line, radial line and triangulation method, Development of prism, cylinder,

Development of Surface: Purpose of development, Parallel line, radial line and triangulation method, Development of prism, cylinder, cone and pyramid surface for both right angled and oblique solids, Development of surface.

Note: The sheets to be created shall be notified by the concerned teacher in the first week of teaching.

Textbooks:

1. Engineering Drawing by N.D. Bhatt, 53rd Ed., Charotar Publishing House Pvt. Ltd., Gujarat, 2017.

- 1. Engineering Drawingby P.S. Gill, S.K Kataria & Sons, New Delhi, 2013.
- 2. *Technical Drawing with Engineering Graphics* by Frederick E. Giesecke, Shawna Lockhart, Marla Goodman, and Cindy M. Johnson, 15th Ed., Prentice Hall, USA, 2016
- 3. Engineering Drawingby M.B. Shah and B.C. Rana, 3rd Ed., Pearson Education, New Delhi, 2009.

Pap	erCode: ICT155	Paper: El	ectrical Science Lab.			L	Р	C
Pap	erID: 164155			-	2	1		
Tea	chers Continuous Evalua	ation:	40 marks		Term End Examinations:	60 N	larks	
Inst	tructions:							
1.	The course objectives an	nd course ou	tcomes are identical to	that of I	ICT103 (Electrical Science) as t	his is t	he prac	tical
	component of the corres	sponding th	eory paper.					
2.	The practical list shall be	e notified by	y the teacher in the first	week of	f the class commencement.			
D	G L D0155	D E	· · · · · · · · ·	** 1		T	n	0

Рар	erCode: BS157	•	L	P	C			
Pap	erID: 99157					-	2	1
Tea	Teachers Continuous Evaluation: 40 marks Term End Examinations: 6							
Inst	ructions:							
1.	The course objectives a	ind course of	utcomes are identic	al to that o	f BA109 (Engineering Chemistr	y - I) a	as this i	s the

practical component of the corresponding theory paper.The practical list shall be notified by the teacher in the first week of the class commencement under intimation to

2. The practical his shall be notified by the leacher in the first week of the class commencement under infination to the office of the school in which the paper is being offered.

PaperCode: BS159	Paper: En	igineering Physics -	I Lab.	L	Р	C
PaperID: 99159				-	2	1
Teachers Continuous Evalu	60 N	Aarks				
Instructions:						

1. The course objectives and course outcomes are identical to that of BA113 (Engineering Physics - I) as this is the practical component of the corresponding theory paper.

The practical list shall be notified by the teacher in the first week of the class commencement under intimation to the office of the school in which the paper is being offered.

PaperCode: HS102Paper: Communication Skills - IILT/PCPaperID: 991023-3														
PaperID:	99102	-	Tuper	. comme	meution					3	-	3		
Marking	Scheme:													
1.	Teachers	Continuou	ıs Evalua	tion: 25 m	arks									
2.	Term end	Theory E	xaminatio	ons: 75 ma	arks									
Instructio	on for pap	per setter:												
1. There	should be	e 9 questic	ons in the	term-end	examinati	ons quest	ion paper							
2. The f	first unit	will be co	ompulsory	and cov	er the en	tire syllat	ous. This	question	will hav	ve Five su	ıb-parts,	and the		
stude	nts will b	e required	to answe	er any TH	REE part	ts of 5 ma	rks each.	This un	it will ha	ve a total	weightag	e of 15		
mark	s.													
3. Apart	from uni	t 1 which	is compu	ilsory, the	e rest of th	he paper s	shall cons	sist of 4 u	inits as po	er the syll	abus. Ev	ery unit		
shall	have two	questions	s covering	g the corr	esponding	g unit of	the syllat	ous. How	ever, the	student s	shall be a	sked to		
attem	tempt only one of the two questions in the unit. Individual questions may contain up to 5 sub-parts / sub-questions. ach Unit shall have a marks weightage of 15.													
Each	Each Unit shall have a marks weightage of 15. The questions are to be framed keeping in view the learning outcomes of the course/paper.													
4. The q	The questions are to be tramed keeping in view the learning outcomes of the course/paper.													
Course U	Irse Objectives: To develop the theoretical framework of communication to understand the professional interaction													
1:	To develop the theoretical framework of communication to understand the professional interaction.													
2:	To develop confidence in all aspects of communication whether verbal or non-verbal.													
5.	Tobe at	ble to crea	le error-m	bomiona to	affaatiw		instian	its for pro	Diessional	records.				
4.	To be at	leate the c	apacity to	organize	ideas and	systemati	cally prov	ent them	through	various m	edia			
J. 6.	Tohool	ala to ariti	apacity to	origanize	writton to	systemati	dio viene	l inpute	fectively		cula.			
0. Course O	utcomes	1000000000000000000000000000000000000	carry appr	eclate the	witten te	and au	uno-visua	ii inputs o	enecuver	у.				
COLISE	Ability	to underst	and basic	concents	regarding	commun	ication ar	nd develo	n a clear	understan	ding of th	e flow		
01.	oft	houghts	and basic	concepts	regarding	ç commun	ication ai		p a cicai	understan	ung of u	IC HOW		
CO2·	Ability	to apply ve	erbal and	non-verba	l commu	nication sl	cills in re	al-life sit	ations					
CO3:	Ability	to write ar	nd docum	ent the inf	ormation	in the app	ropriate f	ormats.						
CO4:	Ability	to effective	elv comm	unicate in	interpers	onal and i	ntercultu	al situati	ons with	ut being i	nisunders	stood.		
Course O	urse Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High													
CO/PO	PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12													
C01	-	-	-	-	-	-	-	-	3	3	-	3		
<i>CO2</i>	-	-	-	-	-	-	-	-	3	3	-	3		
CO3	-	-	-	-	-	-	-	-	3	3	-	3		
<i>CO4</i>	-	-	-	-	-	-	-	-	3	3	-	3		
•				•		•								

Unit I

Communication as Process:Concept of Communication, Communication as a Process, Formal, Informal and Intercultura communication, Barriers to Effective Communication and remedies, Characteristics of Effective Communication

[8Hrs]

Unit II

Communication Efficiency:Concept of Non-verbal Communication, Elements of Non-verbal Communication – Gestures, Postures, Facial-expressions, Gaze, Eye contact, and Space, Presentation skills – Interviews, Group Discussion, Making presentations with Audio-visual aids, Electronic Communication – Internet and Social media. [8Hrs]

Unit III

Technical Documents: Definition, Types, Structure, Significant Features of: Resume Writing, Report Writing, Proposal Writing Dissertation, and Research Papers [8Hrs]

Unit IV

Communication in Society and Workplace: Text 1 – Gender-inclusive Language Background, Purpose, and Guidelines United Nations Gender-inclusive Language https://www.un.org/en/gender-inclusive-language/index.shtml

Text 2 - Cultural Diversity in India

India: Unity in Cultural Diversity Introduction (P. xii – xviii) https://dsel.education.gov.in/sites/default/files/book_unity_in_diversity.pdf

Text 3 – The Matrix (1999)

Genre: Movie (Science Fiction) Dir. The Wachowski Brothers

Textbooks:

1. High English Grammar and Composition by Wren, P.C. & Martin H., S. Chand & Company Ltd, New Delhi.

2. Technical Communication: Principles & Practice by Meenakshi Raman, New Delhi: Oxford University Press

[8Hrs]

- 1. Be Grammar Ready: The Ultimate Guide to English Grammar by John Eastwood, New Delhi, Oxford University Press, 2020.
- 2. Communication Skills: A Workbook by Sanjay Kumar & Pushp Lata, New Delhi, Oxford University Press, 2018.
- 3. Basic Technical Communication by Kavita Tyagi & Padma Mishra, New Delhi, PHI Learning, 2012.
- 4. Advanced Technical Communication by Kavita Tyagi & Padma Mishra, New Delhi, PHI Learning, 2011.

PaperCode: BS104 Paper: Engineering Chemistry - II L T/P C														
PaperCo	de: BS104	1	Paper	:: Engine	ering Che	emistry - l	1				L T	/P C		
PaperID:	99104										3 -	3		
Marking	Scheme:													
1.	Teachers	Continuou	is Evalua	tion: 25 m	arks									
2.	Term end	Theory E	xaminatio	ons: 75 ma	arks									
Instructio	on for pap	per setter:												
1. There	should be	e 9 questio	ns in the	term-end	examinati	ions quest	ion paper							
2. The f	irst unit	will be co	mpulsory	y and cov	er the en	tire syllat	ous. This	question	will hav	ve Five s	ub-parts,	and the		
stude	nts will b	e required	to answe	er any TH	IREE part	ts of 5 ma	rks each.	. This un	it will ha	ve a total	weighta	ge of 15		
marks	5.													
3. Apart	from uni	t 1 which	is compu	ulsory, the	e rest of the	he paper s	hall cons	sist of 4 u	inits as p	er the syl	labus. Ev	ery unit		
shall	have two	questions	covering	g the corr	esponding	g unit of	the syllat	ous. How	vever, the	student	shall be	asked to		
attem	pt only or	ne of the tw	vo questi	ons in the	unit. Ind	ividual qu	estions n	nay conta	in up to 5	5 sub-part	s / sub-q	uestions.		
Each	Unit shall	have a m	arks weig	shtage of	15.									
4. The q	The questions are to be framed keeping in view the learning outcomes of the course/paper. The standard / level of the questions to be sched should be at the level of the prescribed textbook													
quest	questions to be asked should be at the level of the prescribed textbook.													
5. The re	5. The requirement of (scientific) calculators / log-tables / data – tables may be specified if required.													
Course O	rse Objectives:													
1:	To unde	erstand me	thods to 1	make pure	water an	d use fuels	3.							
2:	To unde	erstand the	use of te	chniques 1	used to ch	aracterize	engineer	ing mater	rials.					
3:	To unde	erstand the	propertie	es and indu	ustrial app	olications	of polyme	ers.						
4:	To unde	erstand the	basics of	nano-tec	hnology a	nd bio che	emistry							
Course O	utcomes	(CO):												
CO1:	Ability	to make pı	ire water	and use fi	iels and p	erform en	ergy conv	version ca	alculation	s				
CO2:	Ability	to use tech	niques us	sed to char	racterize e	engineerin	g materia	ıls.						
CO3:	Underst	and the pr	operties a	and indust	rial applic	ations of _l	polymers							
CO4:	Underst	and the ba	sics of na	no-techno	ology and	bio chemi	stry							
Course O	Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High													
CO/PO	P001	PO02	PO03	P004	PO05	<i>PO06</i>	PO07	P008	P009	P010	PO11	PO12		
CO1	2	2	3	3	2	-	-	-	1	1	-	1		
<i>CO2</i>	2	2	3	3	2	-	-	-	1	1	-	1		
CO3	2	2	3	3	2	-	-	-	1	1	-	1		
CO4	2	2	3	3	2	-	-	-	1	1	-	1		

Unit I

Water treatment: Introduction, Hardness of water, Disadvantages of hard water, Water-softening-Lime-Soda process, Ion-exchanger polished water, Boiled-feed water, boiler problems-scale, sludge priming and foaming, caustic embrittlement and corrosion. Fuels: Classification of fuels, Calorific values, Comparison between solid, liquid and gaseous fuels, Bomb calorimeter, Calorific value

of gaseous fuel, Theoretical calculation of calorific value of a fuel, Wood, Coal, Analysis of coal, Natural Gas, Producer gas, water gas, Non-Conventional sources of energy. [10Hrs]

Unit II

Spectroscopic Techniques: Basic principles of spectroscopic methods. The use The use of various spectroscopic techniques for the determination of structure of simple compounds. XRD, SEM and TEM. [10Hrs]

Unit III

Polymers: Basic concepts & Terminology, such as monomers, Polymers, functionality, Thermoplastics, Thermosets, Linear, Branched, cross linked polymers etc. Different definitions of molecular weight's viz. Mw, Mn, Mv and then determinations, Industrial applications of polymers. General methods of synthesis of organics and their applications. [10Hrs]

Unit IV

Nano Technology: Introduction, Properties, Synthesis and characterization of Nanomaterials, Material self-assembly, Nanoscale materials and their applications.

Biochemistry: Molecular basis of life, study of macro molecules: Carbohydrates, Proteins, Lipids, Nucleic acid. Metabolism, basic concepts and design, Glycolysis citric acid cycle oxidative phosphorylation pentose phosphate pathway..

[10Hrs]

Textbooks/References:

1. Engineering Chemistry (16th Edition) by Jain, Jain, Dhanpat Rai Publishing Company, 2013.

- 2. Textbook of Engineering Chemistry by Java Shree Anireddy, Wiley, 2017.
- 3. Engineering Chemistry by E.R. Nagarajan and S. Ramalingam, Wiley, 2017.
- 4. Biochemistry by Lubert Stryer, Jeremy Berg, John Tymoczko, Gregory Gatto 9th Edition 2019. W H Freeman & Co.

PaperCode: BS106 Paper: Engineering Mathematics – II L T/P C														
PaperCo	de: BS10	6	Paper	: Enginee	ering Mat	hematics	– II				L	T/P	C	
PaperID:	99106										4	-	4	
Marking	Scheme:													
1.	Teachers	Continuo	us Evalua	tion: 25 n	narks									
2.	Term end	l Theory E	xaminati	ons: 75 m	arks									
Instructio	on for paj	per setter	•											
1. There	e should b	e 9 questi	ons in the	term end	examinat	ions quest	tion paper	•						
2. The f	řirst (1 st) c	question s	hould be	compulse	ory and co	over the e	ntire sylla	abus.This	question	should be	e obje	ctive, s	ingle	
line a	nswers or	short ans	wer type	question of	of total 15	marks.								
3. Apart	t from que	estion 1 w	which is c	ompulsor	y, rest of	the paper	shall co	nsist of 4	units as p	per the sy	llabus	. Every	7 unit	
shall	have two	question	s coverin	g the cor	respondir	ng unit of	the sylla	abus. Hov	vever, the	e student	shall	be ask	ed to	
attem	pt only o	ne of the	two quest	ions in th	ie unit. In	dividual o	questions	may cont	ain upto :	5 sub-par	ts / su	b-ques	tions.	
Each	Unit shal	l have a m	arks weig	ghtage of	15.									
4. The c	uestions	are to be	framed ke	eping in	view the	learning	outcomes	s of the co	ourse / pa	per. The s	standa	rd / lev	el of	
the questions to be asked should be at the level of the prescribed textbook.														
5. The requirement of (scientific) calculators / log-tables / data – tables may be specified if required.														
Course O	Course Objectives:													
1:	To unde	erstand Co	mplex se	ries metho	ods.									
2:	To unde	erstand Co	mplex an	alysis										
3:	To unde	erstand Fo	urier and	Laplace n	nethods		· .		222					
4:	To unde	erstand ho	w to solve	e specific	formulate	ed enginee	ring prob	lems usin	g PDE me	thods.				
Course O	utcomes	(CO):			-									
CO1:	Ability	to use Coi	nplex ser	ies metho	ds.									
CO2:	Ability	to use Cor	nplex ana	lysis to so	olve formu	ulated eng	ineering	problems						
CO3:	Ability	to use Fou	rier and I	laplace m	ethods to	solve form	nulated er	ngineering	g problem	S				
CO4:	Ability	to solve sp	ecific for	mulated e	engineerin	ig problen	ns using F	DE meth	ods.					
Course O	ourse Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High													
CO/PO	PO01	PO02	PO03	PO04	<i>PO05</i>	<i>PO06</i>	PO07	PO08	P009	PO10	PO.	11 P	012	
<i>CO1</i>	2	3	3	3	1	-	-	-	-	-	1	2		
<i>CO2</i>	2	3	3	3	1	-	-	-	-	-	2	2		
<i>CO3</i>	2	3	3	3	1	-	-	-	-	-	2	2		
<i>CO4</i>	2	3	3	3	1	-	-	-	-	-	2	2		

Unit I

Complex Analysis – I : Complex Numbers and Their Geometric Representation, Polar Form of Complex Numbers. Powers and Roots, Derivative. Analytic Function, Cauchy–Riemann Equations. Laplace's Equation, Exponential Function, Trigonometric and Hyperbolic Functions. Euler's Formula, de'Moivre's theorem (without proof), Logarithm. General Power. Principal Value.Singularities and Zeros. Infinity,

Line Integral in the Complex Plane, Cauchy's Integral Theorem, Cauchy's Integral Formula, Derivatives of Analytic Functions, Taylor and Maclaurin Series. [10Hrs]

Unit II

Complex Analysis - II: Laurent Series, Residue Integration Method. Residue Integration of Real Integrals,

Geometry of Analytic Functions: Conformal Mapping, Linear Fractional Transformations (Möbius Transformations), Special Linear Fractional Transformations, Conformal Mapping by Other Functions, Applications: Electrostatic Fields, Use of Conformal Mapping. Modeling, Heat Problems, Fluid Flow. Poisson's Integral Formula for Potentials

[10Hrs]

Unit III

Laplace Transforms: Definitions and existence (without proof), properties, First Shifting Theorem (s-Shifting), Transforms of Derivatives and Integrals and ODEs, Unit Step Function (Heaviside Function).Second Shifting Theorem (t-Shifting), Short Impulses. Dirac's Delta Function. Partial Fractions, Convolution. Integral Equations, Differentiation and Integration of Transforms. Solution of ODEs with Variable Coefficients, Solution of

Systems of ODEs. Inverse Laplace transform and its properties.

Fourier Analysis: Fourier Series, Arbitrary Period. Even and Odd Functions. Half-Range Expansions, Sturm–Liouville Problems. Fourier Integral, Fourier Cosine and Sine Transforms, Fourier Transform. Usage of fourier analysis for solution of ODEs. Inverse Fourier transform and its properties. [10Hrs]

Unit IV

Partial Differential Equations (PDEs): Basic Concepts of PDEs. Modeling: Vibrating String, Wave Equation. Solution by Separating Variables. Use of Fourier Series. D'Alembert's Solution of the Wave Equation. Characteristics. Modeling: Heat Flow from a Body in Space. Heat Equation:Solution by Fourier Series.Steady Two-Dimensional Heat Problems. Dirichlet Problem. Heat Equation: Modeling Very Long Bars.Solution by Fourier Integrals and Transforms. Modeling: Membrane, Two-Dimensional Wave Equation. Rectangular Membrane. Laplacian in Polar Coordinates. Circular Membrane. Laplace's Equation in Cylindrical and Spherical Coordinates. Potential. Solution of PDEs by Laplace Transforms. [10Hrs]

Textbooks:

1. Advanced Engineering Mathematics by Erwin Kreyszig, John Wiley, 10th Ed., 2011.

- 1. Engineering Mathematics by K.A. Stroud withDexter J. Booth, Macmillan, 2020.
- 2. Advanced Engineering Mathematics by Larry Turyn, Taylor and Francis, 2014.
- 3. Advanced Engineering Mathematics by Dennis G. Zill, Jones & Bartlett Learning, 2018.
- 4. Advanced Engineering Mathematics with MATLAB by Dean G. Duffy, Taylor and Francis, 2017.
- 5. Advanced Engineering Mathematics by Merle C. Potter, Jack L. Lessing, and Edward F. Aboufadel, Springer (Switzerland), 2019.
- 6. Mathematical Methods for Physics and Engineering, by K. F. Riley, M. P. Hobson and S. J. Bence, CUP, 2013.

PaperCode: BS108 Paper: Engineering Physics - II L T/P C													
PaperCo	de: BS108	8	Paper	: Enginee	ering Phy	sics - ll					LI	:/ P	C
PaperID:	99108										3 -		3
Marking	Scheme:												
1.	Teachers	Continuou	is Evaluat	tion: 25 m	arks								
2.	Term end	Theory E	xaminatio	ons: 75 ma	arks								
Instructio	on for pap	per setter:											
1. There	should be	e 9 questic	ons in the	term-end	examinati	ons quest	ion paper						
2. The f	irst unit v	will be co	mpulsory	and cov	er the en	tire syllał	ous. This	question	will hav	ve Five su	ub-parts	and	the 1
stude	nts will b	e required	to answe	er any TH	REE part	ts of 5 ma	rks each.	. This uni	it will ha	ve a total	weighta	ige c	of 15
marks	5.												
3. Apart	from uni	t 1 which	is compu	lsory, the	e rest of the	he paper s	hall cons	sist of 4 u	inits as p	er the syll	labus. E	very	unit
shall	have two	questions	covering	g the corr	esponding	g unit of	the syllat	ous. How	ever, the	student s	shall be	aske	ed to
attem	pt only or	ne of the t	wo questi	ons in the	unit. Ind	ividual qu	estions m	nay conta	in up to £	sub-parts	s / sub-q	uest	ions.
Each	Unit shall	have a m	arks weig	htage of 1	15.								
4. The q	. The questions are to be framed keeping in view the learning outcomes of the course/paper. The standard / level of the												
questions to be asked should be at the level of the prescribed textbook.													
 The requirement of (scientific) calculators / log-tables / data – tables may be specified if required. 													
Course O	bjectives	:											
1:	To learn	n about the	quantum	nature of	reality.								
2:	To learn	n about qu	antum sta	tistics and	l its signif	icance.							
3:	To learn	n about the	band the	ory of sol	ids and pr	operties a	nd charac	eteristics of	of diodes.				
4:	To unde	erstand the	basics of	physical	basis of b	iology.							
Course O	utcomes	(CO):											
CO1:	Underst	and and a	opreciate	the quantu	ım nature	of reality							
CO2:	Underst	and quant	um statist	ics and its	significa	nce.							
CO3:	Underst	and the ba	nd theory	of solids	and prope	erties and	character	istics of d	liodes.				
CO4:	CO4: To have an understanding of the physical basis of Biology.												
Course O	Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High												
CO/PO	P001	PO02	PO03	PO04	P005	P006	PO07	P008	P009	PO10	P011	P	012
C01	2	2	3	3	2	-	-	-	1	1	-		1
CO2	2	2	3	3	2	-	-	-	1	1	-		1
CO3	2	2	3	3	2	-	-	-	1	1	-		1
<i>CO4</i>	2	2	3	3	2	-	-	-	1	1	-		1

Unit I

Quantum Mechanics: Introduction: Wave particle duality, de Broglie waves, the experiment of Davisson and Germer, electron diffraction, physical interpretation of the wave function, properties, the wave packet, group and phase velocity, the uncertainty principle . The Schrödinger wave equation (1D), Eigen values and Eigen functions, expectation values, simple Eigen value problems – solutions of the Schrödinger's equations for the free particle, the infinite well, the finite well, tunneling effect, the scanning electron microscope, the quantum simple harmonic oscillator (qualitative), zero point energy. [12Hrs]

Unit II

Quantum Statistics: The need for statistics, statistical distributions: Maxwell Boltzmann, Bose-Einstein and Fermi-Dirac statistics, their comparisons, Fermions and Bosons, Applications of quantum statistics: 1. Molecular speed and energies in an ideal gas; 2. The Black body spectrum, the failure of classical statistics to give the correct explanations – Bose-Einstein statistics applied to the Black Body radiation spectrum; Fermi-Dirac distribution, free electron theory, electronic specific heats, Fermi energy and average energy; Dying stars. [12Hrs]

Unit III

Band Theory of Solids: Origin of energy bands in solids, motion of electrons in a periodic potential – the Kronig–Penny model (Qualitative). Brillouin zones, effective mass, metals, semi-conductors and insulators and their energy band structures. Extrinsic and Intrinsic semiconductors, doping – Fermi energy for doped and undoped semiconductors, the p-n junction (energy band diagrams with Fermi energy), the unbiased diode, forward and reverse biased diodes – tunnel diodes, zener diode, photo diode its characteristics, LED [12Hrs]

Unit IV

Introduction to Physics in Biology: Overview : from molecules to life - the building blocks of biology, DNA Packing and Structure, The relationship between shape and function of biomolecules, Numbers and Sizes, System Variability and Spatial Scales, Timescales in Biological Systems [4Hrs]

Textbooks:

- 1. Concepts of Modern Physics (SIE)by Arthur Beiser, Shobhit Mahajan, and S. Rai Choudhury, McGraw Hill, 2017.
- 2. Modern Physics by Kenneth S. Krane, Wiley, 2020.

- 1. Physics for Scientists and Engineers by Raymond A. Serway and John W. Jewett, 9th Edition, Cengage, 2017
- 2. Principles of Physics by Robert Resnick, Jearl Walker and David Halliday, Wiley, 2015.
- 3. Solid State Electronic Devices , by Streetman and Ben G Prentice Hall India Learning Private Limited; 2006

4. https://drive.google.com/file/d/169AQBvIzHzbRjZU6M8oe260ZUWp7iUm1/view [part of NPTEL Lectures https://nptel.ac.in/courses/115/101/115101121/#

	B.	. Tech	Biochen	nical	Engine	eering,	USCT,	Guru	Gobind	Singh	Indra	prastha	Univer	sity
--	----	--------	---------	-------	--------	---------	-------	------	--------	-------	-------	---------	--------	------

B. Tech	Biochem	lical Engineer	ing, US	CI, Gui	u Gob	and Su	ngh Indi	raprast	ha U	niver	sity			
PaperCode: BS11	0	Paper: Probabi	lity and S	tatistics f	or Engin	leers			L	Р	C			
PaperID: 99110									3	2	4			
Marking Scheme	:													
1. Teachers	Gontinuou	s Evaluation: 25 n	narks											
2. Term end	d Theory Ex	caminations: 50 m	arks											
3. Term end	d Practical I	Examinations: 25 r	narks											
Instruction for pa	per setter (Term end Theory	y Examina	ations):										
1. There should b	e 9 questio	ns in the term end	examinati	ons questi	on paper									
2. The first (1^{st})	question sh	ould be compulso	ory and co	over the en	tire sylla	abus. Thi	s question	should b	e obje	ctive, s	ingle			
line answers o	r short ansv	ver type question of	of total 15	marks.	1 11	• • • •	· ·,	.1	11 1	г	•,			
3. Apart from qu	Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to													
shall have two	all have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to tempt only one of the two questions in the unit. Individual questions may contain unto 5 sub-parts / sub-questions													
Each Unit shall	tempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions.													
4 The questions	are to be fi	ramed keeping in	view the	learning o	utcomes	of the c	ourse / na	ner The	standa	urd / lex	vel of			
the questions t	o he asked	should be at the le	vel of the	prescribed	l texthoo	k	ourse / pu	per. The	Stunda	iiu / iev	01 01			
5. The requireme	ent of (scien	tific) calculators /	log-tables	/ data – ta	bles may	v be spec	ified if rea	uired.						
Course Objective	s:	,	0			· 1								
1: To und	erstand pro	bability and proba	bility distr	ibutions.										
2: To und	erstand met	hods of summariz	ation of da	ata.										
3: To und	erstand and	use test for hypot	hesis.											
4: To und	erstand met	hods for design ex	periments	s and analy	vsis.									
Course Outcomes	s (CO):													
CO1: Ability	to solve pro	obability problems	and descr	ribe probal	oility dis	tribution	s.							
CO2: Ability	to describe	and summarize da	ata.											
CO3: Ability	to use test	for hypothesis.												
CO4: Ability	to design e	xperiments and an	alyse usin	ig ANOVA	۱.									
Course Outcomes	(CO to Pr	ogramme Outcon	nes (PO) I	Mapping	(scale 1:	low, 2:	Medium, 3	B: High						
CO/PO <i>PO01</i>	$PO\overline{02}$	PO03 PO04	PO05	PO06	PO 07	P008	P009	PO10	PO	11 P	$01\overline{2}$			

Unit I

C01

CO2

CO3

CO4

-

-

-

3

3

3

3

1

1

2

3

1

1

2

3

1

1

1

1

-

-

-

Basics: Probability and Statistical models, Sample Spaces and Events, Counting Techniques, Interpretations and Axioms of Probability, Unions of Events and Addition Rules, Conditional Probability, Intersections of Events and Multiplicationand Total Probability Rules, Independence, Bayes' Theorem, Random Variables.

_

-

-

-

-

-

-

-

-

-

-

-

_

-

-

-

1

1

2

2

2

2

2

2

Discrete and Continuous Random Variables and Distributions: Probability Distributions and Probability Mass / density Functions, Cumulative Distribution Functions, Mean and Variance of a RandomVariable, Discrete and continuous Uniform Distribution, Binomial Distribution, Geometric and Negative BinomialDistributions, Hypergeometric Distribution, Poisson Distribution. Normal Distribution, Normal Approximation to the Binomial, and Poisson Distributions; Exponential Distribution, Erlang and Gamma Distributions, Weibull Distribution, Lognormal Distribution, Beta Distribution. [10Hrs]

Unit II

Joint Probability Distributions for Two RandomVariables, Conditional Probability Distributions and Independence, Joint Probability Distributions for Two Random Variables, Covariance and Correlation, Common Joint Distributions, Linear Functions of RandomVariables, General Functions of Random Variables, Moment-Generating Functions.

Numerical Summaries of Data, Stem-and-Leaf Diagrams, Frequency Distributions and Histograms, Box Plots, Time Sequence Plots, Scatter Diagrams, Probability Plots. Point Estimation, Sampling Distributions and the Central LimitTheorem without proof, Genera Concepts of Point Estimation, Methods of Point Estimation, Statistical Intervals for a SingleSample.

[10Hrs]

Unit III

Hypotheses Testing for a SingleSample: Tests on the Mean of a Normal Distribution with Variance Known / Unknown, Tests on the Variance and Standard Deviationof a Normal Distribution, Tests on a Population Proportion, Testing for Goodness of Fit Nonparametric tests (Signed, Wilcoxon), Similarly Statistical Inference forTwo Samples.

Regression and Correlation: Linear Regression, Least Squares Estimators, Hypotheses testing for simple linear regression, Confidence Intervals, Adequacy of model, Correlation, Transformed Variables, Logistic Regression. Similarly, for multiple linear regression including aspects of MLR. [10Hrs]

Unit IV

ANOVA and Design of experiments: Designing Engineering Experiments, Completely Randomized Single-Factor

Experiment, The Random Effects Model, Randomized complete block design, Concept of Factorial Experiments, Two Factor Factorial Experiments, General Factorial Experiments, 2^k Factorial Designs, Response Surface Methods and Designs. SQC: Quality improvement and Statistics, Control Charts including X and R or S charts, P and U charts, time weighted charts.

[10Hrs]

Note: At least two laboratory practicals in each unit to be conducted. The list of practicals to be notified by the concerned teacher to the school where the students are admitted at the start of the teaching in the semester.

Textbooks:

1.Applied Statistics and Probability for Engineers by Douglas G. Montgomery and Runger, Wiley, 2018

- 1. Miller and Freund's Probability and Statistics for Engineers by Richard A. Johnson, Pearson, 10th Ed., 2018.
- 2. Probability & Statistics for Engineers & Scientists by Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers and Keying Ye, Pearson, 2016.
- 3. Statistics and probability with applications for engineers and scientists using Minitab, R and JMP, C. Gupta, Irwin Guttman, and Kalanka P. Jayalath, Wiley, 2020.
- 4. Probability and Statistics for Engineering and the Sciences, Jay Devore, Cengage Learning, 2014.
- 5. Probability and Statistics in Emgineering, William W. Hines, Douglas C. Montgomery, David M. Goldman, and Connie M. Borror, Wiley, 2003.

B. Tech Biochemical Engineering, USCT, Guru Gobind Singh Indraprastha University PaperCode: ICT114 Paper: Human Values and Ethics															
Paper	rCode: ICT1	14	Paper	: Human	Values a	nd Ethics					L	Р	(2	
Paper	rID: 164114										1	-	1	[
Mark	ing Scheme:														
1	I. Teachers	Continuo	us Evalua	tion: 25 n	narks										
2	2. Term end	l Theory E	xaminati	ons: 75 m	arks										
3	3. This is a	1 NUES pa	per, the e	xaminati	ons are to	be conduc	cted by the	e concerne	ed teacher						
Instru	uction for pa	per setter	:												
1. T	here should b	e 9 questio	ons in the	term end	examinati	ions quest	ion paper								
2. T	he first (1 st)	question sl	hould be	compulse	ory and co	over the e	ntire sylla	ubus.This	question	should be	e objec	tive,	sing	le	
l li	ne answers o	r short ans	wer type	question o	of total 15	marks.									
3. A	apart from qu	estion 1 w	which is c	ompulsor	y, rest of	the paper	shall cor	nsist of 4	units as p	per the sy	llabus.	Eve	ry un	nit	
sl	hall have two	o question	s coverin	g the cor	respondir	ng unit of	the sylla	ıbus. Hov	vever, the	e student	shall b	be as	ked	to	
at	ttempt only o	empt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. ch Unit shall have a marks weightage of 15.													
E	Each Unit shall have a marks weightage of 15. The questions are to be framed keeping in view the learning outcomes of the course / paper.														
4. T	4. The questions are to be framed keeping in view the learning outcomes of the course / paper.														
Cour	Course Objectives:														
1:	To help students regulate their behavior in a professional environment as employees														
2:	To mak	e students	aware of	the impac	et of takin	g non-eth	ical engin	eering dee	cisions.						
3:	To und	erstand tha	t mind an	d desire o	control is	needed for	r being etl	nical.							
4:	To und	erstand org	ganizatior	al culture	and to ad	apt to var	ying cultu	res witho	utcompro	mising et	hical v	alues	5		
Cours	se Outcomes	(CO):													
CO	1: Realize	the impor	tance of h	uman val	ues.										
CO	2: Unders	tand that e	xcessive	desires of	the mind	make a p	erson une	ethical and	l restless,	while few	ver des	ires l	ead t	0	
	peace a	nd profess	ional prog	gress											
CO	3: Assess	different t	ypes of ri	sks invol	ved in une	ethical pra	ctices. Kı	now vario	us means	ofprotest	ing ag	ainst			
	unethic	al practice	s.			-				-					
CO4	4: Assess	the benefi	ts of restr	aining fro	om unethio	cal practic	es like br	ibery, ext	ortion,nep	ootism, ne	exus be	etwee	en		
	politici	ans and inc	lustrialist	s.											
Cours	se Outcomes	(CO to Pi	rogramm	e Outcor	nes (PO)	Mapping	(scale 1:	low, 2: N	ledium, 3	: High					
CO/P	PO <i>PO01</i>	PO02	<i>PO03</i>	PO04	<i>PO05</i>	<i>PO06</i>	PO07	P008	<i>PO09</i>	P010	P01	1	PO1.	2	
<u>C01</u>	-	-	-	-	-	3	-	3	1	1	-		1		
<i>CO2</i>	-	-	-	-	-	3	-	3	1	1	-		1		
<i>CO3</i>	-	-	-	-	-	3	-	3	1	1	-		1		
<i>CO4</i>	-	-	-	-	-	3	-	3	1	1	-		1		

Unit I

Human Values: Morals, Values, Ethics, Integrity, Work ethics, Service learning, Virtues, Respect for others, Living peacefully, Caring, Sharing, Honesty, Courage, Valuing time, Cooperation, Commitment, Empathy, Self-confidence, Challenges in the work place, Spirituality [3Hrs]

Unit II

Engineering Ethics: Senses of engineering ethics, Variety of moral issues, Types of inquiries, Moral dilemma, Moral autonomy, Moral development (theories), Consensus and controversy, Profession, Models of professional roles, Responsibility, Theories about right action (Ethical theories), Self-control, Self-interest, Customs, Religion, Self-respect, Case study: Choice of the theory

Engineering as experimentation, Engineers as responsible experimenters, Codes of ethics, Industrial standards, A balanced outlook on law, Case study: The challenger [3Hrs]

UnitIII

Safety definition, Safety and risk, Risk analysis, Assessment of safety and risk, Safe exit, Risk-benefit analysis Sefety lessons from 'the challenger', Case study: Power plants, Collegiality and loyalty, Collective bargaining, Confidentiality, Conflict of interests, Occupational crime, Human rights, Employee rights, Whistle blowing, Intellectual property rights. [4Hrs]

UnitIV

Globalization, Multinational corporations, Environmental ethics, Computer ethics, Weapons development, Engineers as managers, Consulting engineers, Engineers as expert witness, Engineers as advisors in planning and policy making, Moral leadership, Codes of ethics, Engineering council of India, Codes of ethics in Business Organizations

[3Hrs]

Textbooks:

1. A Textbook on Professional Ethics and Human Values, by R. S. Naagarazan, New Age Publishers, 2006.

- 1. Professional Ethics and Human Values by D. R. Kiran, McGraw-Hill, 2014.
- 2. Engineering Ethics, by Charles E Harris and Micheal J Rabins, Cengage Learning Pub., 2012.
- 3. Ethics in Engineering, Mike Martin and Roland Schinzinger, McGraw Hill Pub., 2017.
- 4. Unwritten laws of Ethics and Change in Engineeringby The America Society of Mechanical Engineers, 2015.

5. Engineering Ethics by Charles B. Fleddermann, Pearson, 2014.

- 6. Introduction to Engineering Ethics by Mike W. Martin and Roland Schinzinger, McGraw-Hill, 2010.
- 7. Engineering Ethics: Concept and Cases by Charles E. Harris, Michael S. Pritchard and Michael J.Rabins, Cengage, 2009.
- 8. *Ethics in Engineering Practiceand Research* by Caroline Whitbeck, Cambridge University Press, 2007.

PaperCode: EMES112	Paper: Environmental Studies	L	Р	C
PaperID: 99112		4	-	4
Marking Scheme		-		-

- Teachers Continuous Evaluation: 25 marks 1.
- Term end Theory Examinations: 75 marks 2.

Instruction for paper setter:

There should be 9 questions in the term end examinations question paper. 1.

The first (1st) question should be compulsory and cover the entire syllabus. This question should be objective, single line answers or short answer type question of total 15 marks.

3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15.

4. The questions are to be framed keeping in view the learning outcomes of the course / paper.

5.	The requirement	of (scientific)	calculators /	log-tables /	′ data – tables may	be specified	if required
----	-----------------	-----------------	---------------	--------------	---------------------	--------------	-------------

Course C	purse Objectives:													
1:	The cou	ırse is desi	gned to ii	npart basi	ic knowle	dge of the	e environn	nent and i	ts compor	nents.				
2:	The cou	irse deals	in creatir	ig awaren	ess about	the energ	gy resourc	es and cu	rrent envi	ronmenta	al problem	is faced		
	by the v	vorld.												
3:	To under	erstand an	d learn a	bout envi	ronment p	ollution,	related ca	ase studie	s and mea	asures tal	ken for co	ntrol to		
4.	To und	n.	d avelore	different		and of one		nd meator	ting anti	anmont	for the he	nofit of		
4:	society.	erstand an	u exploite	amereni	approact		iserving a	ind protec	ung envi	ronnent	for the be			
Course C	outcomes	(CO):												
CO1:	Environmental Studies course will provide necessary information and knowledge about the various aspects of													
	environment, ecosystems and related biodiversity.													
CO2:	Students will be able to learn and understand about the availability and sustainable use of resources,													
	environ	mental pro	oblems ar	nd their sh	ort term a	and long to	erm impac	ets to hum	ans.					
CO3:	Course	will help 1	them to le	earn abou	t environi	nental po	licies and	protocols	s, social is	sues and	role of hu	ıman in		
	conserv	ation and j	protection	n of envir	onment.									
CO4:	Overall	, course w	ill help s	tudents to	develop	skills and	l ability o	f understa	anding en	vironmen	ıt- human			
	relation	ship.												
Course C	outcomes	(CO to Pr	ogramm	e Outcon	nes (PO))	Mappin	g (scale 1	: low, 2: N	Medium, .	3: High)				
CO/PO	P001	PO02	PO03	PO04	PO05	P006	PO07	P008	P009	P010	P011	PO12		
C01	- 1 1 2 3 2 1 1 1 1													
<i>CO2</i>	- 1 1 2 3 2 1 1 1 1													
СО3	- 1 1 2 3 2 1 1 1 1													
<i>CO4</i>	-	1	1	-	-	2	3	2	1	1	1	1		

Unit I

Fundamentals: The Multidisciplinary nature of environmental studies: Definition, components, scope and importance, need for public awareness:

Ecosystems: Concept, Structure and function of an ecosystem, energy flow in ecosystems, food chain, food web, ecological pyramids, ecological succession; Introduction to types, characteristics features, structure and function of different ecosystems including forest, grassland, desert and aquatic ecosystem;

Biodiversity: Introduction to biodiversity-definition, genetics, species, ecosystem diversity, biogeographical classification of India, value of biodiversity-consumptive uses, productive, social, ethical, aesthetic and option values, biodiversity at global, national and local level, India as a mega diversity nation, endangered and endemic species of India, hot spots of biodiversity, threats to biodiversity habitat loss, poaching of wild life, man wildlife conflicts and conservation of biodiversity- in-situ and ex-situ conservation.

[16Hrs]

Unit II

Renewable and Non-renewable Resources: Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources-green fuel.

Water Resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems

Forest resources: Use and over-exploitation, deforestation, Timber extraction, mining, dams and their effects on forest and tribal people, case studies

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies

Food resources: World food problems, changes caused by agriculture and over-grazing, effects of modern agriculture, fertilizerpesticide problems, water logging, salinity, case studies

Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.

Role of individual in conservation of natural resources, Resource Management-Sustainable development.

[8Hrs]

Unit III

Environmental Pollution: (a) Air Pollution: Types of pollutants, source, effects, sink & control of primary pollutants– CO, NOX, HC, SOx and particulates, effect of pollutants on man & environment: photochemical smog, acid rain and global warming, CO2 Sequestration. (b) Water Pollution: Classification of Pollutants, their sources, waste water treatment (domestic and industrial). (c) Soil Pollution: Composition of soil, classification and effects of solid pollutants and their control. (d) Solid Waste Management: Classification, waste treatment and disposal methods; compositing, sanitary land filling, thermal processes, recycling and reuse methods. (e) Hazardous wastes - Classification, radioactive, biomedical & chemical, treatment and disposal- Physical, chemical and biological processes. (f) Marine Pollution: Causes, effects and control of marine pollution, coastal zone management. Disaster Management: Floods, earth quake, cyclone and landslides [8Hrs]

Unit IV

Environmental Policies, Human Population and Environment

Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents, case studies; Some important Environmental laws, issues involved in enforcement of environment legislations, Green bench; carbon footprint, Montreal and Kyoto Protocol, conservation of Biological Diversity, The Chemical Weapons Convention, Environment Impact Assessment; population growth and variation among nations, Impacts on environment and human health, human right, Tribal people and rights, Human and wildlife conflicts in Indian context, Environmental ethics; Role of government and non government organizations in public awareness and environment improvement. [13Hrs]

Field work (equal to 5 hours) : visit to local areas to document environmental assets, study of simple ecosystems, study and identification of common plants, birds and insects.

Suggested Readings and References:

- 1. A textbook of environmental studies, R. Gadi, S. Rattan, S. Mohaptra, Kataria Publication, 2014.
- 2. Elements of environmental sciences & engineering, P. Meenakshi, PHI Learning Pvt Ltd, 2014.
- 3. Basics of Environment and Ecology, A. kaushik & C.P. Kaushik, New Age International Publishers, 2010.
- 4. Fundamental concepts in environmental studies, D.D. Mishra, S Chand & Co. Ltd., 2008.
- 5. Textbook of environmental studies, E. Barucha, UGC, 2005.
- 6. Environmental studies, B. Joseph, Tata McGraw-Hill Publishing Company Ltd., 2005.

F	PanerCod	e ICT1	52	Pan	er: Engir	ieering (ranhics_	п				L	р	C
F	aper Cou Paner ID:	164152	54	1 ap	er, Engn	itering 0	apmes					-	2	1
		104132										- 1	2	1
	arking:	Scheme:	a	- 1										
	1.	Teachers	Continuo	us Evalu	ation: 40	marks								
	2.	Term end	Theory E	xaminat	ions: 60 n	narks								
(Course O	bjectives	:											
	1:	The stu	dents will	learn see	ctioning c	of solid fig	gures.							
	2:	The stu	dents will	understa	nd 3D pro	ojections.	They wil	l have un	derstandi	ng of ison	netric an	d oblic	jue	
		projecti	ons.		1	5	2			0			1	
	3:	The stu	dents will	have une	derstandi	ng of pers	pective p	rojections	5.					
	4: The students will learn computer aided drafting.													
(4: I ne students will learn computer alded drafting.													
		Ability	to drow a	ational d	liaanama	of colida								
	COI:	Ability				of solids	1 1 1							
	CO2:	Ability	to draw 3	S project	ions (isor	netric and	i oblique)	•						
	CO3:	Ability	to draw p	erspectiv	e projecti	ons.								
	CO4:	Underst	tand and u	se a CAl	D tool (A	utoCAD).								
(Course O	utcomes	(CO to P	rogramr	ne Outco	mes (PO) Mappir	g (scale	1: low, 2:	Medium	, 3: High	1		
(CO/PO	PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12												
(CO1	3	3	3	3	2	-	-	-	1	2	1		2
(CO2	3	3	3	3	2	-	-	-	1	2	1		2
(C O 3	3	3	3	3	2	-	-	-	1	2	1		2
(C O 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												

Unit I

Section of Solids: Definition of Sectioning and its purpose, Procedure of Sectioning, Illustration through examples, Types of sectional planes-application to few examples.

Unit II

Isometric Projection: Classification of pictorial views, Basic Principle of Isometric projection, Difference between isometric projection and drawing, Isometric projection of solids such as cube, prism, pyramid and cylinder.

Oblique Projection: Principle of oblique projection, difference between oblique projection and isometric projection, receding lines and receding angles, oblique drawing of circle, cylinder, prism and pyramid.

Unit III

Perspective Projection: Principle of perspective projection, definitions of perspective elements, visual ray method, vanishing point method.

Conversion of 3D to 2D figures.

Unit IV

Introduction to CADD: Interfacing and Introduction to CAD Software, Coordinate System, 2D drafting: lines, circles, arc, polygon, etc., Dimensioning, 2-D Modelling, Use of CAD Software for engineering drawing practices.

Note: The sheets to be created shall be notified by the concerned teacher in the first week of teaching.

Textbooks:

1. Engineering Drawing by N.D. Bhatt, 53rd Ed., Charotar Publishing House Pvt. Ltd., Gujarat, 2017.

- 1. Engineering Drawingby P.S. Gill, S.K Kataria & Sons, New Delhi, 2013.
- 2. *Technical Drawing with Engineering Graphics* by Frederick E. Giesecke, Shawna Lockhart, Marla Goodman, and Cindy M. Johnson, 15th Ed., Prentice Hall, USA, 2016
- 3. Engineering Drawingby M.B. Shah and B.C. Rana, 3rd Ed., Pearson Education, New Delhi, 2009.
- 4. AutoCAD 2017 for Engineers & Designersby Sham Tickoo,, Dreamtech Press 2016.

Pap	erCode: BS156	Paper: En	gineering Chemistry	- II Lab.		L	Р	С
Pap	erID: 99156					-	2	1
Tea	chers Continuous Evalu	ation:	40 marks	Term End Examinat	ions:	60 N	larks	
Inst	tructions:							
1. The course objectives and course outcomes are identical to that of BA104 (Engineering Chemistry							as this i	is the
practical component of the corresponding theory paper.								
2.	The practical list shall	be notified b	by the teacher in the fi	rst week of the class commence	ement und	ler ir	ntimatio	on to
	the office of the school	in which the	paper is being offered	l.				
Pap	erCode: BS158	Paper: En	igineering Physics - I	I Lab.		L	Р	С
Pap	erID: 99158					-	2	1

··· r					
Tea	chers Continuous Evaluation:	40 marks	Term End Examinations:	60 Mar	·ks
Inst	ructions:				
1.	The course objectives and course o	utcomes are identical to that	of BA108 (Engineering physics	- II) as th	nis is the
	practical component of the correspo	onding theory paper.			
2.	The practical list shall be notified by	by the teacher in the first wee	k of the class commencement u	nder intin	nation to

2. The practical list shall be notified by the teacher in the first week of the class commencement under intimation to the office of the school in which the paper is being offered.

PaperCo	de: ICT1	54	Paper	Worksh	op Techn	ology					L	Р	C
PaperID:	164154	-			- F	- 8/					-	2	1
Marking	Scheme:												
1.	Teache	rs Continu	ious Eval	uation: 40) marks								
2.	Term e	nd Theory	Examina	tions: 60	marks								
Instruction	ons:												
1. The office	the practical list shall be notified by the teacher in the first week of the class commencement under intimation to the first of the school in which the paper is being offered.												
Course O	bjectives:												
1:	The students will learn basics of safety precautions to be taken in lab. / workshop												
2:	The stu	The students will have an overview of different machines used in workshop and the operations performed on											
	these machines.												
3:	The stu	dents will	have und	erstanding	g of vario	us welding	g processe	es.					
4:	The stue	dents will	have und	erstanding	g of sheet	metals ho	p and fitti	ing shop					
Course O	utcomes	(CO):											
CO1:	Ability	to safely v	vork in a	Lab./work	cshop.								
CO2:	Ability	to use mad	chines (la	the, mill, s	shaper, pl	aner, grin	der, drill)						
CO3:	Ability	to weld.											
CO4:	Ability	to use she	et metal t	ools and f	itting sho	p tools.							
Course O	utcomes	(CO) to P	rogramr	ne Outco	mes (PO)	Mappin	g (scale 1	: low, 2: N	Medium,	3: High)			
CO/PO	P001	PO02	PO03	PO04	<i>PO05</i>	PO06	PO07	P008	P009	P010	POI	1	<i>PO12</i>
CO1	2	1	2	2	3	3	-	-	-	-	-		2
<i>CO2</i>	2	1	2	2	3	1	-	-	-	-	-		2
СО3	2	1	2	2	3	1	-	-	-	-	-		2
<i>CO4</i>	2	1	2	2	3	1	-	-	-	-	-		2

Unit I

Safety, precautions and maintenance: Safety in shop, safety devices, safety and precautions - moving machine and equipment parts, electrical parts and connections, fire, various driving systems like chain, belt and ropes, electrical accidents, an overview of predictive, preventive and scheduled maintenance, standard guidelines to be followed in shop.

Unit II

Introduction to machine shop: Introduction to Lathe, Milling, shaper, Planer, grinder, drilling and overview of operations performed on these machines by making some jobs.

Unit III

Introduction to welding shop: Welding, types of welding, tools and applications, gas welding and arc welding, edge preparation, various joints formation by gas welding and electric arc welding.

Unit IV

Introduction to sheet metal shop: Sheet metal tools and operations, formation of a box using sheet. Introduction to fitting shop: Introduction to fitting, tools and applications, some jobs in fitting shop.

Textbooks:

1. Workshop Technology Vol. 1 and Vol. 2, Hajra Choudhary and Roy, Media Promoters and Publishers, 2018.

References:

1. A course in Workshop Technology Vol.1 and Vol. 2, B. S. Raghuvanshi, Dhanpat Rai and Compnay, 2015.

2. Workshop Technology (Manufacturing Processes), Khurmi and Gupta, S. Chand Publication, 2010.

PaperCo	de: ICT1	60	Paper	: Progran	nming in	Python					L	P	С
PaperID:	164160											2	1
Marking	Scheme:												
1.	Teache	rs Continu	ious Eval	uation: 40) marks								
2.	. Term e	nd Theory	⁷ Examina	ations: 60	marks								
Instructio	ons:												
1. The	practical	list shall b	e notified	l by the te	eacher in t	he first w	eek of the	e class coi	nmencem	ent under	r intin	natio	n to the
offic	e of the s	chool in w	hich the	paper is b	eing offer	red.							
Course O	bjectives	:											
1:	The stue	The students will learn the Programming in the Python Language											
2:	The students will learn usage of language implemented data structures.												
3:	The students shall learn the object oriented features of the Python Language.												
4:	The stu	dents will	learn usa	ge of the l	Numpy, P	anda and	Matplotli	b					
Course O	utcomes	(CO):											
CO1:	Ability	to write pr	ocedural	programn	nes in Pyt	hon.							
CO2:	Ability	to write pr	ograms u	sing stand	dard data	structures							
CO3:	Ability	to use obje	ect orient	ed paradig	gm to writ	te progran	1 in Pytho	n.					
CO4:	Ability	to use Nur	npy, Pan	da and Ma	atplotlib n	nodules to	write pro	grams.					
Course O	utcomes	(CO) to P	rogram	ne Outco	mes (PO)	Mapping	g (scale 1	: low, 2: N	Medium,	3: High)			
CO/PO	P001	PO02	PO03	PO04	P005	PO06	PO07	PO08	P009	PO10	PO	11	PO12
C01	-	1	2	1	3	-	-	-	1	1	1	l	1
<i>CO2</i>	-	1	2	1	3	-	-	-	1	1	1	l	1
<i>CO3</i>	-	1	2	1	3	-	-	-	1	1	1	l	1
<i>CO4</i>	-	1	2	1	3	-	-	-	1	1	1	[1

Unit I

Identifiers, keywords, statements & expressions, variables, operators, precedence & associativity, data types, indention, comments, console I/O, type conversion. Control flow statements (if family; while & for loops; continue & break statements), exception handling, Functions, command line arguments.

Unit II

String management & usage, Lists, Dictionaries, Tuples & Sets. The operations on these data structures. Filter, Map and Reduce Function,

Unit III

Object Oriented Programming: Properties / attributes, methods, inheritance, class variables & functions, static methods, delegation, abstract base classes, Generic function.

File Handling.

Unit IV

Numpy: Dtypes, Multidimensional Arrays, Slicing, Numpy Array & Memory, Array element-wise operations, Numpy Data I/O, floating point numbers, Advanced Numpy dtypes.

Pandas: Using series and Dataframes, Indexing & Reindexing, Deleting and merging items, Common operations, Memory usage and dtypes, Pipes, Displying dataframes, Rolling & Filling operations.

Matplotlib: Setting defaults, Legends, Subplots, Sharing Axes, 3D surfaces

Note: Atleast two laboratory practicals in each unit to be conducted. The list of practicals to be notified by the concerned teacher at the start of the teaching in the semester.

Textbooks:

- 1. Introduction to Python Programming, Gowrishankar S. and Veena A., CRC Press, 2019.
- 2. Python Programming for Data Analysis, Jose Unpingco, Springer Nature, 2021.

- 1. Python: An Introduction to Programming, James R. Parker, 2nd Ed., Mercury Learning And Information, 2021.
- 2. Introduction to Computation and Programming Using Python, John V. Guttag, The MIT Press, 2021.
- 3. Python Programming: A Practical Approach, Vijay Kumar Sharma, Vimal Kumar, Swati Pathak, and Shashwat Pathak, CRC Press, 2021.

B. Tech Biochemical Engineering, USCT, Guru Gobind Singh Indraprastha Univ	uversity
--	----------

PaperCo	de: ICT1	16	Paper	Introdu	ction to M	lanufactu	iring Pro	cess			L	T/P	C
PaperID:	164116										3	-	3
Marking	Scheme:												
1.	Teachers	Continuo	us Evalua	tion: 25 n	narks								
2.	Term end	l Theory E	xaminati	ons: 75 m	arks								
Instructio	on for paj	per setter:	:										
1. There	e should b	e 9 questic	ons in the	term end	examinati	ions quest	ion paper						
2. The f	řirst (1 st) c	question sl	hould be	compulse	ory and co	over the en	ntire sylla	abus.This	question	should be	e objec	tive,	single
line a	nswers or	short ans	wer type	question o	of total 15	marks.							
3. Apart	t from que	estion 1 w	hich is c	ompulsor	y, rest of	the paper	shall cor	nsist of 4	units as p	per the sy	llabus.	Ever	y unit
shall	have two	question	s coverin	g the cor	respondin	ig unit of	the sylla	abus. Hov	vever, the	student	shall l	be asl	ced to
attem	pt only of	ne of the t	two quest	tions in th	ie unit. In	dividual c	questions	may cont	ain upto :	5 sub-par	ts / suł	-ques	stions.
Each	Unit shall	l have a m	arks weig	ghtage of	15.								
4. The q	uestions a	are to be fi	ramed kee	eping in v	riew the le	arning ou	tcomes of	f the cours	se / paper.	. The stan	dard /	level	of the
quest	questions to be asked should be at the level of the prescribed textbook.												
5. The r	5. The requirement of (scientific) calculators / log-tables / data – tables may be specified if required.												
Course O	bjectives	:											
1:	The stud	dents will	have basi	e understa	anding of v	various m	anufactur	ing proce	sses. The	students v	will ha	ve	
	knowle	dge about	casting p	rocess.									
2:	The stue	dents will	have und	erstanding	g of joinin	g process	es.						
3:	The stue	dents will	have und	erstanding	g of forgir	ng and she	et metal v	vorks.					
4:	The stue	dents will	have basi	c idea of p	powder m	etallurgy a	and manu	facturing	of plastic	compone	ents.		
Course O	outcomes	(CO):											
CO1:	Underst	and castin	ig process	s .									
CO2:	Underst	and joinin	g process	3.									
CO3:	Underst	and forgir	ng and she	eet metal	work.								
CO4:	Basic u	nderstandi	ng of pov	vder meta	llurgy and	l manufac	turing of p	plastic con	mponents	•			
Course O	utcomes	(CO) to P	rogramr	ne Outco	mes (PO)	Mapping	g (scale 1	: low, 2: N	Medium,	3: High)			
CO/PO	P001	PO02	PO03	PO04	<i>PO05</i>	<i>PO06</i>	PO07	<i>PO08</i>	P009	P010	P01	1 1	PO12
<i>C01</i>	2	1	1	1	2	-	-	-	-	-	1		1
<i>CO2</i>	2	1	1	1	2	-	-	-	-	-	1		1
<i>CO3</i>	2	1	1	1	2	-	-	-	-	-	1		1
<i>CO4</i>	2	1	1	1	2	-	-	-	-	-	1		1

Unit I

Definition of manufacturing, Importance of manufacturing towards technological and social economic development, Classification of manufacturing processes, Properties of materials.

Metal Casting Processes: Sand casting, Sand moulds, Type of patterns, Pattern materials, Pattern allowances, Types of Moulding sand and their Properties, Core making, Elements of gating system. Description and operation of cupola.

Working principle of Special casting processes - Shell casting, Pressure die casting, Centrifugal casting. Casting defects.

[10Hrs]

Unit II

Joining Processes: Welding principles, classification of welding processes, Fusion welding, Gas welding, Equipments used, Filler and Flux materials. Electric arc welding, Gas metal arc welding, Submerged arc welding, Electro slag welding, TIG and MIG welding process, resistance welding, welding defects. [10Hrs]

Unit III

Deformation Processes: Hot working and cold working of metals, Forging processes, Open and closed die forging process. Typical forging operations, Rolling of metals, Principle of rod and wire drawing, Tube drawing. Principle of Extrusion, Types of Extrusion, Hot and Cold extrusion.

Sheet metal characteristics -Typical shearing operations, bending and drawing operations, Stretch forming operations, Metal spinning. [10Hrs]

Unit IV

Powder Metallurgy: Introduction of powder metallurgy process, powder production, blending, compaction, sintering Manufacturing Of Plastic Components: Types of plastics, Characteristics of the forming and shaping processes, Moulding of Thermoplastics, Injection moulding, Blow moulding, Rotational moulding, Film blowing, Extrusion, Thermoforming. Moulding of thermosets- Compression moulding, Transfer moulding, Bonding of Thermoplastics. [10Hrs]

Textbooks:

1. Manufacturing Technology: Foundry, Forming and WeldingVolume 1, P. N Rao, McGrawHill, 5e, 2018.

2. Elements of Workshop TechnologyVol. 1 and 2by Hajra Choudhury, Media Promoters Pvt Ltd., 2008.

References:

1. Manufacturing Processes for Engineering Materials, by Serope Kalpajian and Steven R.Schmid, Pearson Education, 5e, 2014.

- Fundamentals of Modern Manufacturing: Materials, Processes, and Systems by Mikell P. Groover, John Wiley and Sons, 4e, 2010.
 Production Technology by R.K.Jain and S.C. Gupta, Khanna Publishers. 16th Edition, 2001.

				0	0				0	•			
PaperCo	de: BS118	8	Paper	Industri	ial Chemi	stry					L	T/P	C
PaperID:	99118										3	-	3
Marking	Scheme:												
1.	Teacl	hers Conti	nuous Ev	aluation:	25 marks								
2.	Term	end Theo	ry Exami	nations: 7	5 marks								
Instructio	on for pap	per setter:	:										
1. There	should b	e 9 questio	ons in the	term end	examinat	ions quest	ion paper	•					
2. The f	ïrst (1 st) c	question sl	hould be	compulse	ory and co	over the e	ntire sylla	ubus.This	question	should be	e obje	ctive, s	single
line a	nswers or	short ans	wer type	question of	of total 15	marks.							
3. Apart	from que	estion 1 w	which is c	ompulsor	y, rest of	the paper	shall cor	isist of 4	units as p	per the sy	llabus	. Ever	y unit
shall	have two	question	s coverin	g the cor	respondir	ig unit of	the sylla	ibus. Hov	vever, the	e student	shall	be ask	ed to
attem	pt only of	ne of the f	two quest	tions in th	ie unit. In	dividual d	questions	may cont	ain upto	5 sub-par	ts / su	b-ques	tions.
Each	Unit shall	I have a m	arks weig	ghtage of	15.			C /1	,	T 1 (1 1	1 1	6.4
4. The q	uestions a	are to be fi	ramed kee	eping in v	1ew the le	arning ou	tcomes of	t the cour	se / paper	. The stan	idard /	level	of the
quest	ions to be	asked sho	ould be at	the level	of the pre	scribed te	XIDOOK. ables max	be specif	fied if rea	uired			
Course O	bioativos		inine) car	culators /	log-tables	57 uata – t	autes may	be speen	liculi licq	uncu.			
1.	Learn a	• hout the fi	Inctioning	r of drugs	and dyes								
2.	Learn a	bout the m	netioning	rtant wav	s of preve	nting corr	osion						
3.	Learn a	bout the n	roperties	of heteroc	veles	nung com	031011.						
4.	Learn a	bout techn	iques of s	synthesis	yeres								
Course O	utcomes	(CO):	iiques or i	ynneois.									
CO1:	Underst	tand the fu	nctioning	of drugs	and dves.								
CO2:	Underst	and the m	ost impor	tant ways	of prever	nting corro	osion.						
CO3:	Underst	and the pr	operties of	of heteroc	vcles	0							
CO4:	Underst	tand techn	iques of s	vnthesis.	J								
Course O	utcomes	(CO) to P	rogram	ne Outco	mes (PO)	Mapping	g (scale 1	: low, 2: M	Medium,	3: High)			
CO/PO	PO 01	PO02	PO03	PO04	PO05	PO06	P007	PO08	PO09	PO10	PO	1 F	O 12
C01	3	2	3	3	1	1	1	-	-	-	-		1
CO2	3	2	3	3	1	1	2	-	-	-	-		1
СО3	3	2	3	3	1	-	-	-	-	-	-		1
<i>CO4</i>	3	2	3	3	1	-	-	-	-	-	-		1

Unit I

Polymerization technology, dyes and drugs: classification of polymers, plastics, fibres, elastomers. Dyes: Requirements of a dye, chemical nature, classification, chemistry of representative important dyes. Pharmaceuticals: sulfa drugs, antipyretics and analgesics, antibiotics, antimalarials. Caustic soda & Chlorine. Hydrochloric acid. Sulphur & sulphuric Acid. [10Hrs]

Unit II

Corrosion: Corrosion and its economic aspects, Thermodynamics of corrosion, Immunity, corrosivity and passivation. Mechanism and kinetics of Corrosion. Electrochemical methods for corrosion testing.

Corrosion Prevention Techniques: Metallic coatings, organic paints, varnishes, corrosion inhibitors, cathodic and anodic protection.

Corrosion Prevention Techniques: Metallic coatings, organic paints, varnishes, corrosion inhibitors, cathodic and anodic protection. [10Hrs]

Unit III

Chemistry of Heterocyclic Compounds: Introduction, nomenclature, structures, and reactivities of heterocyclic compounds. Chemistry and reactivity of five and six membered heterocyclic compounds with one hetero atoms. Chemistry of selected industrially important heterocyclic compounds. [8Hrs]

Unit IV

Synthetic Methods: Introduction to synthesis, strategy of synthesis. Designing of green synthesis: choice of starting materials, reagents, catalysts and solvents. Basic principles of green chemistry and synthesis of organic compounds involving basic principles of green chemistry methodology of synthesis. New methods in organic synthesis: microwave technique, use of phase transfer catalyst in organic synthesis. [12Hrs]

Textbooks and References:

1. J.P. Mukhlyonov: Fundamentals of Chemical Technology.

2.M.G. Rao, M.Sittig: Dryden's out line of Chemicals Technology.

3.Emil Raymond Riegel: Industrial Chemistry.

4. Frank Hall Thorp: Outlines of Industrial Chemistry.

5.M.G. Fontana: Corrosion Engineering, McGraw Hill International Book Co. London.

6.L.L. Shreir: Corrosion, Vol I and Vol II, Newness Butterworths, Edward Arnold Ltd, London.

7.J.C. Scully: Fundamental of Corrosion, Pargmon Press Inc. New York, USA

8.J.A. Joule, K. Mills and G.F. Smith: Heterocyclic chemistry, III Ed., East West Press vt Ltd, ND.

9.A.R. Katrizky and J.A. Boulton: Advances in Heterocyclic chemistry, Vol 1-27, Academic Press, NY.

10.R.M. Achesion: An Introduction to the Chemistry of Heterocyclic Compounds, II Ed, NY.

D. Tech Diochemical Englieering, OSCI, Guiu Gobinu Singh mutaprasula Universi	В.	Tech	Biochemic	al En	gineering,	USCT,	Guru	Gobind	Singh	Indrag	orastha	Universi	ty
---	----	------	-----------	-------	------------	-------	------	--------	-------	--------	---------	----------	----

PaperCo	de: BT12	0	Paper	Introdu	ction to B	iotechno	logy				L	T/P	C
PaperID:	160120										3	-	3
Marking	Scheme:												
1.	Teacl	ners Conti	nuous Ev	aluation:	25 marks								
2.	Term	end Theo	ry Exami	nations: 7	5 marks								
Instructio	on for pap	per setter:	:										
1. There	should b	e 9 questio	ons in the	term end	examinat	ions quest	tion paper	•					
2. The f	ïrst (1 st) c	uestion sl	hould be	compulse	ory and co	over the e	ntire sylla	ubus.This	question	should be	e obje	ctive,	single
line a	nswers or	short ans	wer type	question of	of total 15	marks.	-		-		-		-
3. Apart	from que	estion 1 w	hich is c	ompulsor	y, rest of	the paper	shall con	nsist of 4	units as p	er the sy	llabus	. Eve	ry unit
shall	have two	question	s coverin	g the cor	respondir	ng unit of	the sylla	ıbus. Hov	vever, the	student	shall	be as	ked to
attem	pt only of	ne of the t	wo quest	tions in th	ne unit. In	dividual o	questions	may cont	ain upto 🗄	5 sub-par	ts / su	ıb-que	stions.
Each	Unit shall	l have a m	arks weig	ghtage of	15.								
4. The q	he questions are to be framed keeping in view the learning outcomes of the course / paper.												
5. The re	he requirement of (scientific) calculators / log-tables / data – tables may be specified if required.												
Course O	se Objectives:												
1:	: To introduce different areas in Biotechnology to students, laying a foundation for future courses within our												
	bio	technolog	y progran	nme.									
2:	To prov	ide a histo	orical per	spective of	of the gro	wth and d	levelopme	ent of bio	technolog	y, as wel	l as it	s scop	be and
	importa	nce.											
3:	To help	students u	understan	d the inte	rdisciplin	ary nature	e of bioted	chnology,	involving	; integrati	on of	sever	al
	discipli	nes to gene	erate knov	vledge an	d technol	ogy impac	cting socie	ety and en	vironmen	t.			
4:	To sens	itize stude	nts towar	ds IPR, sa	afety and e	ethical con	ncerns in	oiotechno	logy resea	arch and a	applic	ations	
Course O	utcomes	(CO):											
CO1:	Underst	and the hi	story, sco	pe, interd	isciplinar	y nature a	nd signifi	cance of b	iotechnol	ogy.			
CO2:	Underst	and the ba	asics of re	ecombinat	nt DNA te	echnology	, protein	structure	and engin	eering, bi	ioinfo	rmatio	s and
	principl	e(s) under	lying bas	ic biotech	nological	l techniqu	es.						
CO3:	Describ	e the bas	ics of cu	lturing m	icrobes, a	animal ce	lls and p	lant cells	in labora	tory, and	their	resp	ective
	applicat	tions in Bi	otechnolo	ogy.									
CO4:	Have ar	awarenes	s about th	ne IPR, sa	fety and e	thical issu	ies involv	ed in use	of biotech	mology.			
Course O	utcomes	(CO) to P	rogram	ne Outco	mes (PO)	Mappin	g (scale 1	: low, 2: N	Aedium,	3: High)			
CO/PO	P001	PO02	PO03	P004	P005	<i>PO06</i>	PO07	<i>PO08</i>	PO09	P010	PO	11	PO12
<i>CO1</i>	3	2	3	3	1	1	1	-	-	-	-		1
CO2	3	2	3	3	1	1	2	-	-	-	-		1
<i>CO3</i>	3	2	3	3	1	-	-	-	-	-	-		1
<i>CO4</i>	3	2	3	3	1	-	-	-	-	- 1	- 1		1

Unit I

Introduction: Historical perspective, Definition of Biotechnology; Areas of biotechnology; Scope; Importance and Commercial potential; Interdisciplinary nature;

Solutions and Buffers: Introduction to Solutions and Buffers; Modes of expressing concentration of a solution, Making solutions, Concept of pH and buffers, Henderson-Hasselbach equation, Criteria for selection of buffers;

[8Hrs]

Unit II

Recombinant DNA Technology: Tools of rDNA Technology; Making recombinant DNA; Introduction of recombinant DNA into host cells; Introduction to selection and screening techniques for identification of recombinants; Agarose Gel Electrophoresis; Principle, Steps and Applications of Polymerase Chain Reaction;

Protein Structure and Engineering: Introduction to the world of Proteins, Amino acids as building blocks, Non-covalent interactions, Structure of proteins, Structure Function relationship in Proteins, Recombinant proteins of high value, Introduction to Protein Engineering and Design, Introduction to Proteomics.

Introduction to basic techniques in Biotechnology: Beer-Lambert's Law, Spectrophotometer, Agarose Gel Electrophoresis, SDS-PAGE, Gel-Filtration Chromatography, Ion Exchange Chromatography, Affinity chromatography.

Introduction to Bioinformatics: Concept of Primary and Secondary databases, Nucleic acid and Protein databases, Introduction to sequence alignment, Applications of bioinformatics. [12Hrs]

Unit III

Microbial Biotechnology: Microbial Culture Techniques; Measurement and Kinetics of Microbial Growth; Scale up of microbial process; Isolation of microbial products; Strain Isolation; Improvement and Preservation;

Plant Biotechnology: History of plant tissue culture; Plant cell and tissue culture techniques; Transgenic plants with beneficial traits;

Animal Biotechnology: History of animal tissue culture; Animal Cell culture techniques; Finite and Continuous cell lines;

Characterization of cell lines; Scale-up of animal cell culture; Applications of microbial, plant and animal biotechnology.

[12Hrs]

Unit IV

Biotechnology and Society: Introduction to Patenting; Criterion for patents; Reading a patent; National and International Patent Laws;

Safety and Ethical issues in Biotechnology; Biotechnology in India and global trends; Product safety and marketing. [8Hrs]

Text / Reference Books:

- Introduction to Biotechnology, W.J. Thieman and M.A. Palladino, Pearson, 2019.
 Biotechnology Foundations, J.O. Grady, 2019.
- 3. Gene cloning and DNA Analysis. An introduction. T. A Brown, Wiley-Blackwell Science, 2016.
- 4. Concepts in Biotechnology: History, Science and Business, K.Buchholz and J. Collins, Wiley-VCH, 2011.
- 5. Biotechnology, H.K. Das, 2010, Wiley Publishers.
- 6. Biotechnology, Smith, 2009, Cambridge Press.
- 7. Principles and Techniques of Biochemistry and Molecular Biology by Wilson & Walker, Cambridge Press, 2008.

Theory I	Papers				
Group	Paper	Paper	L	T/P	Credits
	Code				
BS	BA-211	Material Science	3	-	3
PC	CT-201	Process Calculations	3	1	4
PC	CT-203	Fluid Mechanics	3	1	4
PC	CT-205	Mechanical Operation	3	1	4
PC	CT-207	Transport Phenomena	3	1	4
PC	CT-209	Engineering Thermodynamics	3	-	3
HS	ECO-213	Engineering Economics	2	-	2
Practical	l/Viva Voce				
PC	CT-261	Mechanical Operation Lab	-	3	2
PC	CT-263	Fluid Mechanics Lab	-	3	2
Total	·	•	20	10	28

THIRD SEMESTER EXAMINATION

FOURTH SEMESTER EXAMINATION

Theory P	Theory Papers										
Group	Paper	Paper	L	T/P	Credits						
	Code	-									
PC	CT-202	Mass Transfer I	3	1	4						
PC	CT-206	Chemical Reaction Engineering I	3	1	4						
PC	CT-232	Heat Transfer	3	1	4						
PC	CT-234	Instrumentation & Process Control	3	0	3						
PC	CT-236	Microbiology	3	1	4						
PC	CT-238	Biochemistry	3	0	3						
Practical/	Viva Voce										
PC	CT-262	Chemical Reaction Engineering Lab	-	3	2						
PC	CT-264	Instrumentation & Process Control Lab	-	3	2						
PC	CT-282	Microbiology Lab	-	4	2						
		Total	18	14	28						

Theory P	apers				
Group	Paper	Paper	L	T/P	Credits
	Code				
PC	CT-301	Mass Transfer II	3	1	4
PC	CT-331	Bioreaction Engineering	3	1	4
PC	CT-333	Molecular Biology	3	1	4
PCE	CT-335	Protein Science and Engineering	3	0	3
EAE		EAE 1 (opt any one)	3	1	4
OAE		OAE 1 opt any one)	3	1	4
MS	MS-307	Entrepreneurship Mindset	2	-	2
Practical/	/Viva Voce	9			
PC	CT-361	Summer Training /Summer Project *	-	-	1
PC	CT-381	Heat and Mass Transfer Lab	-	3	2
PC	CT-383	Biochemistry and Molecular biology Lab	-	4	2
Total			20	12	30

FIFTH SEMESTER EXAMINATION

*NUES

SIXTH SEMESTER EXAMINATION

Theory Papers								
Group	Paper	Paper	L	T/P	Credits			
	Code	-						
PCE	CT-332	Fermentation Technology	3	0	3			
PCE	CT-334	Computational Methods for biochemical	2	1	3			
		Engineers						
PCE	CT-336	Bioprocess Equipment Design	2	1	3			
EAE		EAE 2 (opt any one)	3	1	4			
OAE		OAE 2 (opt any one)	3	1	4			
OAE		MOOCs 1 (opt any one)	3	1	4			
HS/MS	HS-302	Technical Writing	2	-	2			
Practical/Viva Voce								
HS/MC	ICT352	NSS/NCC/Cultural clubs / Technical		-	2			
*		Society/Technical club*						
PC	CT-362	Computational Lab	-	2	1			
EAE		EAE lab (see EAE 3)	-	3	2			
Total		18	10	28				

*NUES

Theory Papers							
Group	Paper	Paper	L	T/P	Credits		
_	Code						
PC	CT-401	Process Engineering & Economics	3	0	3		
PCE	CT-431	Enzyme Engineering & Technology	3	0	3		
PCE	CT-433	Biochemical Processes	3	0	3		
EAE		EAE 4 (opt any one)	3	1	4		
OAE		OAE 3 (opt any one)	3	1	4		
OAE		MOOCs 2 (opt any one)	3	1	4		
Practical/V	viva Voce		·	-			
PC	CT-461	Minor Project	-	-	3		
PC	CT-463	Summer Training viva*	-	-	2		
EAE	CT-467	Seminar *	-	3	2		
Total			18	6	28		
*NUES			•	•			

SEVENTH SEMESTER EXAMINATION

EIGHTH SEMESTER EXAMINATION

Project/Internship									
Group	Paper Code	Paper	L	T/P	Credits				
PC	CT-462	Major Project/ Internship	-	24	12				
Total				12					