

Part .

3

1

N.T.

3

2

2

100

10.00

1.02

18.ML

100

14

4

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY Sector – 16C Dwarka, New Delhi – 110078 (Coordination Branch)

F.No. IPU/JR(C)/44th AC/2018/454 Circular Dated:04/07/2018

The 44th meeting of the Academic Council of the University was held on 03/05/2018. Please find enclose herewith the proceedings of the 44th meeting of the Academic Council for kind information.

Ch

(Registrar)

F.No. IPU/JR(C)/44th AC /2018/

Dated:04/07/2018

- 1) All Deans and Directors of Guru Gobind Singh^{\$}Indraprastha University
- 2) Prof. Sanjiv Mittal, Professor, University School of Management Studies
- 3) Prof. U.K. Mandal, Professor, University School of Chemical Technology
- 4) Prof. Udayan Ghose, Professor, University School of Information Communication & Technology
- 5) Dr. Nimisha Sharma, Associate Professor University School of Biotechnology
- 6) Dr. Gulshan Kumar, Asst. Professor, University School of Basic and Applied Science.

Copy for kind information of the competent authority:

- (i) AR to the Vice Chancellor GGSIP University
- (ii) SO to the Pro-Vice Chancellor GGSIP University
- (iii) AR to the Registrar GGSIP University

(Registrar) coordination112@gmail.com AC 44th /03td May, 2018-Thrusday/PROCEEDINGS/Page 1 of 18

<u>GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY</u> <u>SECTOR – 16 C, DWARKA, NEW DELHI - 110078</u>

1

FORTY FOURTH MEETING OF THE ACADEMIC COUNCIL

DATE : 03^{rd} May, 2018 (Thursday)

TIME · : 03.30 P.M. Onwards

VENUE: (Conference hall, Vice Chancellor's Secretariat)

PROCEEDINGS OF 44th ACADEMIC COUNCIL MEETING

Sl.No	AGENDA	INDEX OF PROCEEDINGS	Page No.	n
51.140	ITEM(S)	Particulars	Tage No.	St. BAS
la est	No.	raticulars		
	1.40.	To confirm the minutes of 43 rd meeting of the	08	
01	AC44.01	Academic Council held on 25/05/2017.		وجد جاؤ والمرواح
		To consider and approve the Action taken report.	08	an sa dipartipang tarawa T
02	AC44.02	on the proceedings of 43^{rd} meeting of the		
. 02	AC11.02	Academic Council held on 25/05/2017.		per ser se
		To consider and approve the Scheme and Syllabus	08	아이 관고 가지?
10.0	4.33 C	of Bachelors in Hotel Management and Catering		한 것은 것은 많이
03	AC44.03	Technology, to be implemented from the	a nganta	Service and the
10 m f		Academic Session 2018-2019.		
And with	المتعادية والمعالية	To ratify the revised Scheme of Examination and		a server and a server
Sec. 1		Syllabus for, BBA, BBA (B&I),		
.04	AC44.04	B.Com(Hons), implemented from		
		the Academic Session 2017-2018.		
and some	100 mil 100	To ratify the minor revision(Inclusion of Course	09	
		in GST) in the Courses:		
1 N 1	711 - 11 - 11 - 11 - 11 - 11 - 11 - 11	BBA(G),BBA(B&I),BBA(TTM), B.COM(H) and		1. Sec. 1.
05	AC44.05	all undergraduate and Post Graduate Courses		
		offered by University School of Management		As a real sector of
		Studies, implemented from the Academic Session		
		2017-2018.		
		To ratify the Course Work for Ph.D. programme	09	2
06	AC44.06	offered by University School of Management		
00	AC44.00	Studies, implemented from the Academic Session		
		2017-2018.		3
		To ratify the Syllabus, Course content and	09	
No. 24		Scheme of Examination of the M.Phil. (English), 2		
07	AC44.07	Semesters (one year) duration Course,		
		implemented from the Academic Session 2017-		
-		2018.		
		To ratify the revision of Ph.D. Course work, the	10	
Sec. 1	and the second	Course content and Scheme of examination for		Lo Luites
08	AC44.08	Ph.D. course in English, offered by University		
		School of Humanities and Social Sciences,	•	
		implemented from the Academic Session	•	1 A
		2017-2018.	10	ha hi na pakat
1 1 1			10	
14. 14	Section 24	To consider and approve the Course contact for		i sita sie
		To consider and approve the Course content for 3^{rd} & 4^{th} Semester of B.A Economics (Hons) (three		100000
09	AC44.09	year) programme to be implemented from the		
· · · · · ·	1.000	Academic Session 2018-2019.		1
11		Academic Dession 2010-2017.		
1		승규는 것 같은 것 같		

INDEX OF PROCEEDINGS

é.

Ç

Su.

.

		To ratify (i)Syllabus of M.Tech. (Bio Chemical	11
10	AC44.10	Engg.) for B.Tech./M.Tech.(Bio-Chemical Engineering/Dual Degree Programme (ii) minor modification of Chemical Engg. Courses, being taught at the University School of Biotechnology for B.Tech. (Biotechnology) students, implemented from the Academic Session 2017-2018.	
11	AC44.11	To consider and approve the harmonization of evaluation structure of LLM (Regular) programme, offered by University School of Law and Legal Studies in accordance with existing norms of Ordinance -11 of the University.	11
12	AC44.12	To consider and approve the harmonization of the Paper Code and Paper ID of Subjects being taught in LLM programme of One year duration offered by University School of Law and Legal Studies.	11
13	AC44.13	To consider and approve the Syllabus, Curriculum, Evaluation Scheme, CET Syllabus and Eligibility Criteria for, Post Basic B.Sc. Nursing Programme to be implemented from the Academic Session 2018-2019.	
4	лС44.14	To ratify the change in Curriculum of M.Phil. Clinical Psychology programme, implemented from the Academic Session 2017-2018.	12
5	AC44.15	To ratify the minor modification of Ph.D. Course work, offered by University School of Biotechnology, implemented from the Academic	13
		Session 2017-2018. To ratify the Scheme of Examination and syllabi	13
6	AC44.16	of Ph.D. Course work, offered by University School of Basic and Applied Sciences, implemented from the Academic Session 2017-2018.	
		To ratify the Ph.D. course work, offered by	13
17	AC44.17	University School of Environment Management, implemented from the Academic Session 2017- 2018.	
8	AC44.18	To consider and approve the recommendations with respect to the grievance of B.Tech. programme students for mandatory papers.	14
19	AC44.19	To ratify the Admission Brochure of the University for the Academic Session 2018-19, Part-A containing details of various Programmes being offered, CET form filling Procedure, CET (s) to be conducted, eligibility conditions, syllabus of CET (s), Counselling Procedures etc., Part-B containing various Appendices, Part-C Counselling Schedule Summary and Part-D Refund Policy.	14

In

•

Same Contraction

	.*	same part of a set of a		14-15
			To consider and approve the Course outline and	
			Scheme of Examination and detailed Course	in the second
	20	AC44.20	content of the three year Bachelor of Arts	
	20	AC44.20	(Honours) English Programme to be implemented	
			from the Academic Session 2018-2019 in various	
este medica anti-	6.00		offiliated institutions of the University.	
	· · . · . · · ·		To consider and approve the adoption of the	15
and the providence of	1992 - 1997 1		University Grants Commission (William	a state and a state
			Qualifications for Appointment of Teachers and	the state of the state
Stranger - Al		athara in the	other Acalienti stall in the owners	entitie and
Standard (19	21	178 - X 57 2 11	colleges and measures for the Maintenance of Standards in Higher Education)(4 th	J. 476 - 1
a dalah katala sa	21	AC44.21	Standards in Higher Education)(4 th Amendment),Regulations,2016 ,notified vide the	the second second
			University Grants Commission notification	
			University Grants Commission notification no.F1-/2016 (PS/Amendment), New Delhi, dated	المعاصر والشاقي والم
ىچىنى بىلىكىتىنى بەر مەرىمى قىرى ب	an an stairte A	an a	th x 1, 2016	· · · · · · · · · · · · · · · · · · ·
and a second s		····	To consider and approve the Ph.D. Course work	15
	·	AC44.22	offered at University School Information	
til det en se	22	AC44.22	Communication & Technology from the Academic	
			Session 2018-2019 onwards.	1.5
		· ·	To ratify the Ph.D. Course work offered at	15
	1.54	AC44.23	University School Information Communication &	
	23	1.2.2.2.2.2.2.2.2	Technology from the Academic Session 2017-2018	
	1.1		onwards.	16
			To consider and approve number of credits for	10
	24	AC44.24	the award of B.Voc Printing Technology.	16
			To consider and approve the change in subject	16
			and as of the subjects named as (a) Data	
	25		Communication and Networks (6 Semester	
	25	AC44.25	Instrumental and Control Engg) from ELEC 310-	
			ETIC -312 applicable for batch 2015-2016	
			onwards for B.Tech. in Affiliated Institutions. To consider and approve the suggestions	16
		inune	To consider and approve the suggestions regarding issue of Diploma, Advance Diploma and	
	26	AC44.26	B. Voc as deliberated by the committee under the	
			B. Voc as democrated by the committee under chairmanship of Controller of Examinations (O).	
			Chair manship or control of 2	17
	-		To consider and approve	
•			(i) Introduction of two new electives on basic and	1
an ili an in that		S. South	advanced entrepreneurship as a part of the	Mar Paris.
			M. Tech. (Biotechnology) Scheme and curriculum	
			2016, to be implemented from the Academic	in the second second
Sector Sector			Session 2018-2019.	
0			(ii) The minor corrections in the course codes as	
	27	AC44.27	incorporated in the B.Tech. (Biotechnology)	Contract Sec.
	27		Curriculum (2016 scheme) in the subjects taught	わち 合生
	1.5	12.0	by the University School of Basic & Applied	
	Crace		Sciences as per the original course codes approved Sciences as per the original course of USBAS (The	
			by the Board of School of Studies of USBAS. (The	
			remaining scheme and course contents shall	North Article
			remain the same).	
	1		to a share and reacting or an interaction of the second	
			(h	

	a handalar a	To consider and approve the revised Course	
	d invetter s	Content, (Syllabus) of MBA	
28	AC44.28	(Disaster Management) Weekend Programme,	Collin room to the same to be a second
20		offered by Centre for Disaster Management	
		Studies, to be implemented from Academic	Sector Marca
		Session 2018-2019 onwards.	
	Control Second	To co-opt maximum 10 expert members for their	
		special knowledge as per the provisions of	
29	AC44.29	Statute 11 Sub-Section (viii) of Section (1) of the	
		Guru Gobind Singh Indraprastha University Act	
		to be members of the Academic Council.	
		To consider and approve the regulations under	18
30	AC44.30	Ordinance 12 for programmes leading to the	
	the second second second	Degree of Doctor of Philosophy (Ph.D.)	

}

3

a

AC 44th/03rd May, 2018-Thrusday/PROCEEDINGS/Page 13 of 18 Agenda Item No. AC44.15:To ratify the minor modification of Ph.D. Course work, offered by University School ^o of Biotechnology, implemented from the Academic Session 2017-2018.

The Academic Council noted that in accordance to the revised Ph.D. Ordinance12 (2017) in the University, the Ph.D course work is made at par with the overall curriculum framework of the University (lecture+ tutorials). The overall credits increased from 3 to 4. This is the minor modification as the rest of scheme and the course titles and contents for the Ph.D course work essentially remain same.

The Academic Council ratified the minor modification of Ph.D. course work, offered by University School of Biotechnology, implemented from the Academic Session 2017-2018.

The ratified minor modification of Ph.D. course work is annexed as Annexure-XII,page(XII-01 to XII-06).

3

}

1

1

Agenda Item No. AC44.16:To ratify the Scheme of Examination and Syll² bi of Ph.D. Course work, offered by University School of Basic and Applied Sciences, implemented from the Academic Session 2017-2018.

The Academic Council noted that in accordance to the revised Ph.D Ordinance12 (2017) in the University, the Ph.D course work is made at par with the overall curriculum framework of the University (lecture+ tutorials). The overall credits increased from 3 to 4. This is the minor modification as the rest of scheme and the course titles and contents for the Ph.D course work essentially remain same.

The Academic Council ratified the Scheme of Examination and Syllabi of Ph.D. Course work, offered the University School of Basic and Applied Sciences, implemented from the Academic Session 2017-2018.

The ratified Scheme of Examination and Syllabi of Ph.D. Course work is annexed as Annexure XIII, page (XIII-01).

Agenda Item No. AC44.17: To ratify the Ph.D. course work, offered by University School of Environment Management, implemented from the Academic Session 2017-2018.

The Academic Council noted that in accordance to the revised Ph.D Ordinance12 (2017) in the University, the Ph.D course work is made at par with the overall curriculum framework of the University (lecture+ tutorials). The overall credits increased from 3 to 4. This is the minor modification as the rest of scheme and the course titles and contents for the Ph.D course work essentially remain same.

The Academic Council ratified the Ph.D. Course work offered by the University School of Environment Management, implemented from the Academic Session^e 2017-2018.

The ratified the Ph.D. Course work is annexed as Annexure –XIV,page (XIV-01).

University School of Basic & Applied Sciences Guru Gobind Singh Indraprastha University

Scheme and Syllabus for PhD Programmes

In

Mathematics

Scheme and Syllabi 2017-onwards

Entrepreneurship | Employability | Skill Development

Approved in the 44th meeting of the Academic Council held on 03-05-2018 vide agenda item 44.16 w.e.f. 2017

PROGRAMME OUTCOMES

(Ph.D. in MATHEMATICS PROGRAMMES)

PO1KNOWLEDGE, **CRITICAL AND CREATIVE THINKING**: The student will develop the skills for acquiring the right knowledge, skills and critical and creative ways of approaching and carrying out research

PO2 UNDERSTANDING, GATHERING AND REVIEWING INFORMATION AND DATA: The student will develop a thorough knowledge of literature review and a comprehensive understanding of methods and techniques applicable to their own research.

PO3 THE ABILITY TO CARRY OUT ORIGINAL AND INDEPENDENT RESEARCH: The student will learn to apply advanced and specialized skills and be able to act independently in the planning and implementation of research.

PO4COMMUNICATION AND LEADERSHIP SKILLS: Students participate in seminars, research group meetings, competitions, conference talks, poster presentations, and teaching, and learn to communicate effectively. They also learn leadership through communication and working effectively with others and professional conduct that are needed for the effective management of research.

PROGRAMME SPECIFIC OUTCOMES

The Ph.D. Programmes in Physics, Chemistry and Mathematics deal with areas of research that are specializations of the Faculty of the school which could be experimental or theoretical.

MATHEMATICS

PSO1: Learning to present the problem in the context of the particular research area in mathematics and the work done globally. Detailing the aspects of the system, the models, the experimental/theoretical approach and methodology. Having clarity on all basic concepts.

PSO2: Developing problem solving a techniques in mathematics, numerical and computational techniques, statistical analysis, visualization etc in the particular area of mathematics research

PSO3: Learning to interpret and communicate results effectively. Learning to write a manuscript clearly and professionally and being familiar with all aspects of publishing

MAPPING BETWEEN	MAPPING BETWEEN PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES					
PO/PSO	PSO1	PSO2	PSO3			
PO1	5	7	5			
PO2	6	8	9			
PO3	4	5	9			
PO4	3	7	8			

SCHEME AND SYLLABUS for DOCTOR IN PHILOSOPHY In Mathematics

S.	Code	Paper	L	P	Credits
No.					
1.	CWM - 101	Research Methodology for Science &	4	0	4
		Technology			
2.	CWM - 102	Research and Publication Ethics	2	0	NUES
		Elective (Choose atleast One)			
3.	CWM - 103	Introduction to MATLAB and	2	0	2
		Computational Methods			
4.	CWM - 104	MATLAB and Computational Method Lab	0	2	2
5.	CWM - 105	Wavelet Analysis	4	0	4
6.	CWM - 106	Stochastic Processes, Queuing Theory &	4	0	4
		Reliability			
7.	CWM - 107	Space Dynamics			
8.	CWM - 108	Nonlinear Dynamics	4	0	4
9.	CWM - 109	Mathematical Modelling and Ecology	4	0	4
10.	CWM - 110	An Introduction to Fuzzy Mathematical	4	0	4
		Programming			
11.	CWM - 111	An Introduction to Financial Mathematics	4	0	4
12.	CWM - 112	Differentiable Manifolds	4	0	4
13.	CWM - 113	Lie groups and Homogeneous spaces	4	0	4

Paper Code:	aper Code: CWM - 101 Paper: RESEARCH METHODOLOGY FOR SCIENCE & TECHNOLOGY				L	T/P	C
Paper	· ID:				4	-	4
Marking Schem		•				•	•
• 7	Feachers Contin	uous Evalua	tion: 25 marks				
• 7	Ferm end Theory	y Examinati	ons: 75marks				
Course Objectiv	ves:						
1:			some details assoche different branch				ies
2:	Learn methods	s to devise a	nd design a researd	ch set-up			
3:	Planning their	research car	reer				
4:	Conclude research in report writing and meaningful interpretation						
Course Outcom	es (CO):						
CO1:		earn basic c	oncepts of research	n and importance	e.		
CO2:	Collect data th	rough expe	riments or survey a	s per research re	equiren	nent.	
CO3:	Develop under research proce	•	various kinds of r	esearch, objectiv	ves of d	oing rese	arch,
CO4:	Write research	report, rese	earch proposal with	proper citations	s.		
Course Outcom High)			tcomes (PO) Map			Medium	, 3:
CO/PO		PO1	PO2	PO3		PO4	
CO1		3	3	3		3	
CO2		2	3	2		1	
CO3		3	2	3		3	
CO4		3	3	2		3	
UNIT-I							
types of research	, research proces	ss and steps	search: Definition in conducting rese ign; Application of	arch; Planning r	esearch	Problem	esearch,
UNIT-II							
			view of the publish				
			ture of Report, Rep			tions, Re	search
	tion of research	projects pro	posal; Types of re	ports, bibliograp	ohy.		
UNIT-III							
Research Ethics participants & an	imal subjects, a	uthorship al	ndards & practices; location of credit, c entional plagiarism	competing intere	ests, coi	nmitmen	
Research Ethics participants & an	imal subjects, a	uthorship al	location of credit, o	competing intere	ests, coi	nmitmen	
Research Ethics participants & an values. Definition UNIT-IV Invention, Innov	imal subjects, au n, types of plagis vation, IPR: Un tents & copyrigh	uthorship al arism, unint derstanding its, importar	location of credit, o	competing intere n, mechanisms for novation and its	ests, con or avoid role in	nmitmen ling plag	iarism.

Note: In the backdrop of the above, the assignments may be in the context of the chosen research field of the scholar, and may be designed to facilitate in identity the topic and in the process of Synopsis preparation for their respective proposed research. The work out format for the assignments must be intensively participatory; may be conducted by way of presentations and participative discussions in cl

SUGGESTED REFERENCES

- 1. Research Methodology Methods and Techniquest C.R. Kothari, New Age Intl. Pub. (2004)
- 2. Business Statistics for contemporary decision making- Ken Black, John Wiley and Sons, Inc. 2010.
- 3. Research Methodology (Concept and Cases)-Deepak Chawla &NeenaSodhi, Vikas Publication House (P) Ltd. (2011)
- 4. Research Methodology- DebashisChokarvaty, Surbhi (P) Ltd. (2010)
- 5. Research Methodology-Navin Sharma, Deep & Deep (P) Ltd. (2007)
- 6. Research Methodology -Ranjit Kumar, Delhi Pearson Education (2006)
- 7. "The Role of Invention, Innovation and The Industrial Property System in Economic Development", www.wipo.int/cdocs/mdocs/innovation/en/.../wipo inn cai 97 1.doc
- 8. MLA Handbook for Writers of Research Papes- Joseph Gibaldi, New Delhi, Affiliated East West Press (1999 15th edition).

Paper Code: CV	VM - 102	Paper: F	Research Values a	and Ethics	L	T/P	C
Paper II	per ID: 2						NUES
Marking Scheme:							
1. Teachers C	Continuous E	valuation: 25	marks				
2. Term end	Theory Exan	ninations: 75	marks				
Course Objectives							
1: 7	Го develop a	universal app	proach towards hu	man values			
2:	Fo be able to	strike a bala	nce between aspira	ations and happ	iness		
			s are a part of natu			se to nat	ure
		and satisfaction			-		
4: 5	Select classic	al short stori	es from Indian con	text will expos	e the s	tudents	to
(liverse and n	nultifaceted s	ubsections in India	an society			
Course Outcomes	(CO):						
CO1:	The students	will get sensi	tized about the rol	e of value educ	cation a	and lear	n to
	balance ambition & happiness						
CO2:	The students	will be able t	o understand the i	mportance of li	ving ir	n harmo	ny with
-	nature						
CO3:	The students will be able to see the relevance of Professional behavior and						d ethics
CO4:	They will draw inspiration from the classical Indian literature narrated						them in
t	the form of select short stories						
Course Outcomes High)	(CO) to Pr	ogramme Ou	itcomes (PO) Maj	pping (Scale 1	: low, 2	2: Medi	um, 3:
CO/PO		PO1	PO2	PO3		PO	4
CO1		3	1	3		3	
CO2		3	2	2		2	
CO3		2	3	2		3	
CO4		2	3	3		2	

Unit I

The Problem and Paradox of Happiness: Twin goals: happiness and just order; role of value education. Concept of good life-quality of life and subjective well-being; happiness, life satisfaction and positive affect; studying quality of life through surveys; and findings of quality of life surveys. Moral and Institutional approaches; and the inherent conflict between the two. Man and Society

Unit II

Happiness and Nature: Biophilia hypothesis- connections with nature and co-existence with other forms of life, Deep Ecology, Importance of meaningful contact with the natural world, solutions for a healthier, greener tomorrow, Indigenous and traditional knowledge system and its intellectual roots.

Unit III

Basics of Professional Ethics, Ethical Human Conduct:Human Conduct- based on acceptance of basics Human Values, Humanistic Constitution and Universal Human Order-skills, sincerity and fidelity. To identify the scope and characteristics of people-friendly and eco-friendly production systems.

Unit IV

Encompassing Different Stories/ narratives on Human Values from Indian Context.

Suggested Readings and References

- 1. Gaur, R.R., Sangal, S.andBagaria, G., "A Foundation Course in Human Values and Professional Ethics", New Delhi: Excel Books, 2010.
- Mike, W. Martin, "Paradoxes of Happiness", Journal of Happiness Studies, 2008, pp. 171-184.
 Giddens, Anthony, "Sociology", 5th edition, Cambridge: Polity Press, 2006.
- 4. Ambedkar, B.R., Buddha and his dhamma, http://www.scrubd.com/doc/16634512/Buddha-and-His-Dhamma-by-B-R-Ambedkar-Full [accessed on 21 October, 2010]
- 5. Beteille Andre, "Antinomies of Society: Essays on Ideologies & Institutions", New Delhi: Oxford University Press, 2000.
- 6. FikretBerkes, "Sacred Ecology", Second Edition Routledge Taylor & Francis Group, 2008.
- 7. Richard Louv, "Last Child in the Woods", Algonquin Books, 2008.
- 8. Ramakrishnan, E.V., "Indian Short Stories": (18700-200). SahityaAkademi, 2012.
- 9. Davidar, David., "Cluch of Indian Masterpieces", Aleph Book Company, 2016.

"Contemporary Indian Short Stories", SahityaAkademi, 2014.

Paper Code: CV	CWM - 103 Paper: Introduction to MATLAB and L T/P Computational Methods				T/P	С		
Paper II):		•		2	-	2	
Marking Scheme	:							
Teachers 0	Continuous E	Evaluation: 25	marks					
• Term end	Theory Exar	ninations: 75	marks					
Course Objective	s:							
1:	Introduce the students from diverse backgrounds to the in computational techniques and to expand their mathematical skills numerical methods.							
2:		and train stude	nts in computation	nal methods v	vith M	ATLAB	as the	
3:	Expose students to introductory topics and the basics of numerical tech and programming. Problems are selected from a list which is updated fror to time in tune with the needs of industry/research and topical subjects.					from time		
4:	Educate students to learn the logic behind solving problems related to real physical examples, simulation, modelling and designing the algorithms and translating them into programmes							
Course Outcomes	s (CO):							
CO1:	The students are expected to develop the flavour of modelling and simula						ulation.	
CO2:	<u> </u>	0	wledge of MATL					
CO3:	To gain working knowledge of Monte Carlo methods, Time series analysis method for application to real life problems.						ysis	
CO4:	To solve some famous and advanced Mathematics problems using simulation						ulation.	
Course Outcomes High)	s (CO) to Pr	ogramme Ou	tcomes (PO) Mar	oping (Scale	1: low	, 2: Med	lium, 3:	
CO/PO		PO1	PO2	PO3		P	04	
CO1		3	3	2			2	
CO2		3	2	3			2	
CO3		2	3	3			3	
CO4		2	3	3			3	

UNIT-I

Introduction to the MATLAB programming language: Operations in MATLAB: basic mathematical operations with matrices, arrays, etc. Plotting with MATLAB: line plots, 1-D, 2-D, 3-D, meshgrid, labelling axes, legends, importing and plotting data files in MATLAB; Root finding and curve fitting.

UNIT-II

Numerical methods for solving ordinary differential equations: The Euler method, Programming in MATLAB to solve 1st order and 2nd order ODEs by Euler method, Solving ODEs using inbuilt MATLAB solvers

UNIT-III

Numerical methods for Integration: Rectangular, Trapezoidal, Simpson methods

Using direct MATLAB solvers for integration, Introduction to Monte Carlo methods: random numbers, Monte Carlo Integration. Some examples from linear algebra and matrices; Fractals, polynomial fit and exponential fit.

UNIT-IV

Time Series Analysis Methods: Stationary processes, Lag plots, Auto correlation function, Power spectral density.

References

- 1. Rudra Pratap, Getting started with MATLAB [Oxford University Press]
- 2. Chapman, Essentials of MATLAB Programming
- 3. Balagurusamy, Numerical Methods [Tata McGraw Hill]
- 4. Tao Pang, An introduction to Computational Physics [Cambridge University Press]
- 5. Andi Klein and Alexander Godunov, Introductory Computational Physics [Cambridge University Press]
- 6. Ward Cheney and David Kincaid, Numerical Methods and Computing
- 7. AlfioQuarteroni and FaustoSaleri, Scientific Computing with MATLAB and Octave
- 8. S. R. Otto and J. P. Denier, An Introduction to Programming and Numerical Methods in MATLAB

Paper Code: C	WM - 104	Paper: M	ATLAB and Con	nputational	L	T/P	С
			Methods Lab				
Paper II	D:				0	2	2
Marking Scheme	:						
• T	eachers Cont	inuous Evalua	tion: 25 marks				
• T	erm end The	ory Examinatio	ons: 75 marks				
Course Objective							
1:			n diverse backgro				
			heir mathematical				
		•	l theory of various			0	
			ed to programming				ie Lab.
2:			ining of students i	n computational	metho	ds with	
	MATLAB a	s the program	ming language		<u> </u>		
3:			n a list which is up		to time	e in tune	with the
	needs of industry/research and topical subjects.Educate students to learn the logic behind solving problems related to real physical						
4:			0	01		1	
	-		lelling and designi	ng the algorithm	s and t	ranslating	g them
	into programmes						
Correct Orates and							
Course Outcome		have a workin	ngunderstanding o	f the methematic	alabill	encoded f	òr
001.			ngunderstanding o	i the mathematic	aiskiii	sneeded I	01
CO2:	programming.						
CO3:	Theywillgenerateworkingknowledge of MATLAB. Theywillbe able to solvesomefamous and advancedMathematicsproblemsusing					na	
005.	simulation which are otherwisedifficult to solveanalytically.					Ulembusi	ng
CO4:	The students are expected to develop the flavour of modelling and simulation.						1
Course Outcome							
High)	5,00,011	S. annie Ou		ping (Scale I. F	,	1. ICUIUIII	, - •
CO/PO		PO1	PO2	PO3		PO4	
CO1		3	3	3		2	
CO2		2	3	3		1	
CO3		3	2	2		3	
CO4		3	1	2		3	

UNIT-I
Plotting
(a) Eigenvalues & Eigenfunctions for Particle in a Box – 1D & 2D;
(b) Hydrogen atom wave functions
UNIT-II
ODE's – exmples-
(a) Simple, damped and driven Harmonic Oscillator;
(b) Van der Pol Oscillator;
(c) Radioactive Decay;
(d) LCR Circuit;
(e) Schrodinger equation in 1D;
(f) Coupled ODEs – The Lorenz Equations;
(g) Calculation of Eigen functions (π molecular orbitals using HMO theory);
(h) Kinetics of oscillatory reactions.;
UNIT-III
Monte Carlo mthods

(a) Simulate coin toss, die roll etc. using MATLAB's inbuilt commands;
(b) Estimating the value of "pi" using random numbers on a circle & sphere;
(c) Monte Carlo Integration
UNIT-IV
Time Series Analysis Methods: Stationary Processes, Lag Plots, AutoCo-relation Function, Powe
Spectral Density

This list may be updates/modified to included related application from time to time

Assignments may be designed relevant to the broad area of research of the research scholar.

References

- 1. Rudra Pratap: Getting started with MATLAB [Oxford University Press]
- 2. Chapman: Essentials of MATLAB Programming
- 3. Tao Pang: An introduction to Computational Physics [Cambridge University Press]
- 4. Andi Klein and Alexander Godunov: Introductory Computational Physics [Cambridge University Press]
- 5. Ward Cheney and David Kincaid: Numerical Methods and Computing
- 6. AlfioQuarteroni and FaustoSaleri: Scientific Computing with MATLAB and Octave
- 7. S.R. Otto and J.P Denier An Introduction to Programming and Numerical Methods in MATLAB.

Paper C	ode: CWM - 105	Paj	er: Wavelet Anal	ysis	L	T/P	С
F	Paper ID:				4	-	4
Marking Scl	heme:	•					
•	Teachers Continuou	us Evaluation:	25 marks				
•	Term end Theory E	xaminations:	75marks				
Course Obje							
1:		will provide a	n introduction to th	ne theory of wa	avelets	5.	
2:	This course	will develop s	kills to extract info	ormation, analy	ze and	d interpr	et the
	data	-		-		-	
3:	To establish	the theory ne	cessary to understa	and and use wa	velets	and rela	ted
	transformati						
4:	Explain the	properties and	application of wa	velet transform	1.		
Course Out							
CO1:	Students wi	ll be able to cl	assify various wav	elet transforms	s and v	vill get tl	he
		mportance of					
CO2:			to describe Continu	ious Wavelet 7	Fransfo	orm (CW	/T)
			nsform (DWT).				
CO3:			to develop and real	ize computatio	onally	efficient	
		ed algorithms.					
CO4:			owledge of brief f				
	comes (CO) to Progra	mme Outcon	es (PO) Mapping	(Scale 1: low	, 2: M	edium, á	3:
High)			1	1			
	CO/PO	PO1	PO2	PO3		PO4	
	CO1	2	3	2		3	
	CO2	3	2	3		1	
	CO3	1	1	3		3	
	CO4	2	3	3		2	

Unit-I

Fourier and Inverse Fourier Transforms, Continuous-Time Convolution and the Delta Function, Fourier Transform of Square Integrable Functions. Fourier Series. Basic Convergence Theory and Poisson's Summation Formula.

Unit-II

The Gabor Transform. Basic Properties of Gabor Transforms. The Integral Wavelet Transforms, Dyadic Wavelets and Inversions.

Unit-III

Basic Properties of Wavelet Transforms. The Discrete Wavelet Transforms. Orthonormal Wavelets, Wavelet frames & Multiband, Curvelets. Definition of Multiresolution Analysis and Examples.

Unit-IV

Properties Scaling Functions and Orthonormal Wavelet Bases. Construction of Orthonormal Wavelets. Daubechies' Wavelets and Algorithms.

The selection of programming languages and solving tools for applications will be done accordingly.

References:

1.The Fourier Transform & Its Applications, Ronald Bracewell, 2000, Mc Graw Hill 2.An Introduction to Wavelet, Charles Chui, 1992, Academic Press

3.Wavelets made easy, Yves Nievergelt, 1999, Springer-Verlag4.Essential Wavelets for Statistical Applications & Data Analysis, Todd Ogden, 1996, Birkhaus Boston

•	Code: CWN - 106	A Paper: S	itochastic Process Reliabi	es, Queuing Theory & lity	L	T/P	С
Pa	aper ID:				4	-	4
Markin	ng Scheme:				•		
	• Te	eachers Continuc	us Evaluation: 25	marks			
	• Te	erm end Theory I	xaminations: 75n	narks			
Course	e Objectives	5:					
1:	To develo	p the mathemat	ical skill of using v	arious mathematical meth	ods		
2:	To give in	troduction abou	t Random walk.				
3:	To give in	troduction abou	t Poisson process.				
4:	To introd	uce the basic ide	a of Queuing theo	ry			
Course	Outcomes	(CO):					
CO1:	Students	will learn genera	lized queuing mod	lels.			
CO2:	Students	will learn about	Markov process.				
CO3:	Students	will be familiar to	o discrete time que	euesy.			
CO4:	Students	will learn Reliabi	lity theory.				
Course	Outcomes	(CO) to Progran	nme Outcomes (P	O) Mapping (Scale 1: low,	2: Medi	um, 3: H	igh)
CC	D/PO	PO1	PO2	PO3		PO4	
C	01	2	2	3		2	
(02	1	3	2		2	
(03	3	3	3		2	
(04	3	2	3		2	

<u>Unit I:</u>

Markov chains with finite and countable state space, classification of states, limiting behavior of nstep transition probabilities, stationary distribution, branching processes, Random walk, Gambler's ruin. Markov processes in continuous time, Poisson processes, birth and death processes, Wiener process.

Unit II

General Concept, Generalized Queuing model, M/M/1, M/M/1/N and M/M/s Queue, Bulk Queue, Network of Monrovian Queueing System, Non Markovian Queueing Models, M/G/1, GI/M/1 Queue.

Unit III:

General concept of discrete time queues, Applications of Queuing theory. Introduction to Reliability Theory, System Reliability, Repairable and Non Repairable Systems.

Unit IV:

Markov Modeling in Reliability, Life testing using the exponential and Weibull models, Shock Models and Wear Process, Concept of Redundancy.

The selection of programming languages and solving tools for applications will be done accordingly.

SuggestedReadings and References

- 1. Stochastic Processes by Sheldon M. Ross, Wiley India Pvt. Ltd., 1995
- 2. Essentials of Stochastic Processes by Rick Durrett, Springer, 1999
- 3. Mathematical Methods in Queuing Theory by Kalashnikov, Kluwer Academic Publisher, 2010
- 4. Reliability Theory and Practice by Igor Bazovsky, Dover Publication, 2004

Paper	Code: CWM - 107	Paj	per: Space Dynam	ics	L	Т/Р	C
Pa	aper ID:				4	-	4
	ng Scheme:				-	1 1	
	• Tea	achers Continuo	us Evaluation: 25	marks			
	• Tei	rm end Theory E	xaminations: 75n	narks			
Course	Objectives:						
1:	To develop	the mathemat	ical skill of using va	arious mathema	tical	methods	
2:	To give int	roduction about	different co-ordin	nate systems.			
3:	To give int	roduction about	relativity theory.				
4:	To introdu	ce the change o	f co-ordinate syste	em.			
Course	e Outcomes ((CO):					
CO1:	Students w	vill learn Kepler'	s law.				
CO2:	Students w	vill learn about a	angular momentur	n.			
CO3:	Students w	vill be familiar to	o compute surface	s of zero relativ	e vel	ocity.	
CO4:	Students w	vill learn to com	pute parabolic an	d hyperbolic or	oits.		
Course	Outcomes	(CO) to Program	me Outcomes (PO	D) Mapping (Sca	ale 1:	low, 2: N	ledium, 3: High)
CC	D/PO	PO1	PO2	PO3			PO4
(01	3	2	1			2
(02	3	2	1			2
(03	3	2	1			2
C	04	3	2	1			2

Unit I:

Formulation of the Two Body Problem. Integrals of area, angular momentum and energy. Equation of the relative orbit and its solution. Kepler's equation and its solution.

<u>Unit II</u>

Heliocentric and Geocentric Co-ordinates, Parabolic and Hyperbolic orbits, Melnikov's Integral, Orbit computation by Laplace and Gauss methods. Lagrange's solution for the motion of three bodies.

Unit III:

Restricted three body problem. Surfaces of zero relative velocity. Double points. Stability of straight line and equilateral triangle solutions. The ten integrals of motion of the n-body problem.

Unit IV:

Transfer of origin to one of the particles. The perturbing function. Virial theorem. Numerical integration by Cowell's and Encke's methods.

The selection of programming languages and solving tools for applications will be done accordingly.

SuggestedReadings and References

- 1. Theory of Orbits by V. Szebhely, Academic Press, 1967
- 2. Theory of Orbits by Boccaletti, Dina etc., Springer, 2004
- 3. Theory of Orbit Determination by Andrea Milani, Cambridge University Press, 2009.
- 4. Theory of satellite orbits in an atmosphere by Desmond King-Hele, Butterworths edition, in English, 1987

Paper Code: CW	M - 108	Paper: Nonl	inear Dynamics		L	T/P	С			
Paper ID			*		4	-	4			
Marking Scheme:										
• Teachers Continuous Evaluation: 25 marks										
• Term end Theory Examinations: 75marks										
Course Objectives:										
1:	To understa	nd the nonline	ar dynamic system	s, from period	ic to cl	haotic sy	stems			
2:	To understa	nd the basic co	ncepts of fractal g	eometry and fi	actals.					
3:	To introduc	e phase space a	and dynamical sys	tem .						
4:	oduce mather	natical modeli	ng of dynamical s	ystem.						
Course Outcomes (C	O):									
CO1:	The students	s are able to ac	quire enough know	wledge of disc	ete an	d continu	lous			
	dynamical s	ystem.								
CO2:			he geometrical, co							
CO3:			o understand the b				tems and			
			n using analytic a							
CO4:			nderstanding of ho	ow and why a c	lynami	ical syste	em			
	becomes cha									
Course Outcomes (C	O) to Progra				, 2: Me					
CO/PO		PO1	PO2	PO3		PO				
CO1		1	2	1		2				
CO2		3	3	3		3				
CO3		3	3	3						
CO4		2	2	3			2			

Unit-I

Central manifold and Normal form, attractors, 1D map, Logistic map, Poincare' maps, circle map. Bifurcations- Saddle-node, Transcritical, Hopf-bifurcation, Global bifurcations, Poincare's surface of sections, Melnikov's method for homoclinic orbits. Strange attractors & fractals dimentions. Henon map and Rossler system, Box-counting, Hausdorff dimensions. Lyapunov exponent, Horseshoe map chaotic transitions, intermittency, crisis, quasiperiodicity, controlling & synchronization of chaos.

Unit-II

Fractals in nature, Mathematical fractals (the Koch curve and other), Mathematical chaos (the Lorenz attractor). The Cantor set, the Sierpinski triangle and carpet, Self-similar fractals, fractal dimension, modeling of biological growth, Box dimension. Random fractals: Fractal forgeries, Iteration initial value, orbit, fixed point (attracting, repelling, neither), k-cycle (attracting, repelling, neither), fixed points, Period doubling.

Unit-III

The Feigenbaum constant, similarity of the Feigenbaum diagram for different functions. Continuous dynamical systems and strange attractors, Discrete dynamical systems. Phase space. The motion of a pendulum.

Unit-IV

Mathematical modeling, Atractors of typical 2-dimensional systems. Nodes, saddles, focuses, limit cycles, Strange attractors, The Mandelbrot set, the Julia set, geometrical features of Julia and Mandelbrot sets. The selection of programming languages and solving tools for applications will be done accordingly.

References

1.Dynamical Systems, JurgenJost, 2005, Springer

2.Dynamical Systems Stability, Controllability & Chaotic Behaviour, Werner Krabs, 2010, Springer 3.Fractals & Chaos, B.B. Mandelbrot, 2004, Springer

4. Stability of Dynamical Systems Continuous, discontinuous & Discrete Systems, Anthony N.

Michel, 2008, Birkhauser Boston

Paper Code: CWM	[– 109	Paper: Mat	hematical Modell	ing & Ecology	L	T/P	С			
Paper ID:		•		<u> </u>	4	-	4			
Marking Scheme:						•				
• Tea	chers Continu	ous Evaluation:	25 marks							
• Ter	m end Theory	Examinations:	75marks							
Course Objectives:										
1:	To develop	the Mathemati	cal skill of using v	arious mathemation	cal me	thods.				
2:		Enable students understand how mathematical models are formulated, solved, and								
2	interpreted					1 .				
3:		Make students appreciate the power and limitations of mathematics in solving practical real-life problems								
4:			e world of mathem es, and the limita	0	- the	art, the				
Course Outcomes (CO):									
CO1:	Students w	vill develop scie	ntific understandin	g						
CO2:			sensitivity analysi							
CO3:			decisions including							
CO4:	Assess the requires	validity and acc	curacy of their appr	roach relative to w	vhat th	e proble	em			
Course Outcomes (CO) to Progr	amme Outcom	es (PO) Mapping	(Scale 1: low, 2:	Medi	um, 3: I	High)			
CO/PO		PO1	PO2	PO3		PO4				
CO1		2	3	3		2				
CO2		1	2	1		3				
CO3		2	2	2		3				
CO4		3	1	3		2				

Unit-I

Deterministic and stochastic models, tools, techniques, modeling approaches. Models of single and interacting populations, prey-predator, competition, chemical state, AIDS/HIV/ SARS. Epidemic and genetic models. Model for dialysis, Model for brain tumour.

Unit-II

Single species models, Exponential, logistic, Gompertz growth, Harvest model, Discrete-time and Delay model, Interacting population model, Dynamics of exploited populations, Spatially structured models.

Unit-III

Models for traffic flow, computer data communications, Stock Market, spatio-temporal pattern. Modeling of Physical and Engineering systems -Heating and cooling systems, Henon-Heiles systems, Hydro power plant, fuel injection systems and ankle joint.

Unit-IV

Age-structured models, Leslie matrix, Randomly fluctuating Environment, prey-predator and multi-species models in stochastic environment.

The selection of programming languages and solving tools for applications will be done accordingly.

Recommended Books:

- 1. Mathematical Modelling by J.N. Kapur, New Age International, 1998
- Mathematical Biology by J.D. Murray, Springer, 2003
 Elements of Mathematical Ecology by Mark Kot, Cambridge University Press, 2001
- 4. Mathematical Models & Methods for Real World Systems by Frauti, Siddiqui, Taylor Francis Group (CRC), 2005

Paper Co	ode: CWM - 110		per: An Introduc Mathematical Pro		L	T/P	С
P	aper ID:			88	4	-	4
Marking S	Scheme:	•			1		
•	Teachers Co	ontinuous E	valuation: 25 m	arks			
٠	Term end T	heory Exam	inations: 75ma	urks			
Course Ol	bjectives:						
1:	To understand	the basic co	oncepts of fuzzy se	t theory			
2:				rogramming Proble			
3:	To know the a	oplication o	f Linear Programn	ning Problem in Ga	me Theor	·у	
4:	erstand the appl	ication of fi	uzzy set theory in a	lecision making.			
Course Or	utcomes (CO):						
CO1:	The end of the	course the	students are able to	acquire enough kr	owledge	to analyse	the set
	theory and fuzz	zy set theor	у		-	-	
CO2:	This course w	ill help to u	nderstand mathem	atical programming	and mat	ix game th	eory in a
	systematic and						
CO3:				zzy sets to decision	making. '	The studen	ts will
			ogramming and fu				
CO4:	The students w	ill study the	e application of fuz	zzy sets to decision	making.		
Course Ou	utcomes (CO) to	Programm	e Outcomes (PO)	Mapping (Scale 1	: low, 2:	Medium, 3	3: High)
CO /	/PO	PO1	PO2	PO3		PO4	
CC	D1	2	3	3		3	
CC	02	3	2	2		2	
CC	03	2	2	2		3	
CC	04	2	2	3		2	

UNIT I:

Duality in linear programming, two person zero-sum matrix games, linear programming and matrix game equivalence, two person non-zero sum (bi-matrix) games, quadratic programming and bi-matrix game, constrained matrix games.

UNIT II:

Introduction of fuzzy sets, Basic definitions and terminologies, Fuzzy set theoretic operations, alphacuts and their properties, Convex fuzzy sets, Zadeh extension principle, Fuzzy relations, Similarity relation and partitioning, Triangular norms (t-norms) and triangular conorms (t-conorms). Lingustic variable and linguistic Hedges. Fuzzy if-then rule.

UNIT-III

Introduction of fuzzy numbers, Interval arithmetic, Fuzzy numbers and their representation, Arithmetic of fuzzy numbers, Special types of fuzzy numbers and their arithmetic, Ranking of fuzzy numbers.

UNIT-IV

Decision Making in fuzzy environment, Fuzzy linear programming, Quadratic programming in fuzzy environment, A two phase approach for solving fuzzy linear programming, Linear goal programming under fuzzy environment, Matrix game with fuzzy goals, Matrix game with fuzzy pay-offs, Fuzzy Bi-matrix game.

References:

Fuzzy Mathematical Programming and Fuzzy Matrix, Bector, C.R. and Chandra, S.2005, V Games, Springer

Fuzzy Sets and Logic: Theoryand Applications, Klir, G.J. and Yaun, B.,2004Prentice Hall ,India Fuzzy Sets Theory and its Appliocations, Zimmermann, H.-J.,2001, 4th edition, Springer Game Theory, G.Owen, 1995, Academic Press, , San Diego

Paper	Code: CW		aper: An Introd Mathematics	luction to	L	T/P	С
	Paper ID:				4	-	4
Markir	ng Scheme	:				•	
	• T	eachers Continuous	Evaluation: 25 mark	s			
	• T	erm end Theory Exa	minations: 75 marks	5			
Course	Objective	s:					
1:	Introduc	e the concepts of fin	ancial mathematics.				
2:	Introduc	e students to the use	e of mathematical m	odels for financial proc	lucts		
3:	Develop	student abilities to c	reate, derive, and a	oply mathematical mod	lels		
4:	The cour	se will introduce the	concept of risk and	return			
Course	Outcome	s (CO):					
CO1:	The know	wledge of risk and re	turn will be integrate	ed in optimal decision r	naking		
CO2:	Develop	computational skills	in students				
CO3:	Develop	in students the abili	ty to apply mathema	tics to real-world prob	lems		
CO4:	Promote	analytical and critica	al thinking.				
Course	Outcome	s (CO) to Programm	e Outcomes (PO) Ma	apping (Scale 1: low, 2:	: Medium	, 3: High))
CC)/PO	PO1	PO2	PO3		PO	4
C	01	3	3	2		3	
C	202	2	3	2		2	
C	03	3	3	3		3	
0	04	3	3	3		2	

Unit-I

Basic Terminology:Financial markets,Interest computation, value, growth and discount factors, derivative products.

Unit-II

Derivative Pricing: Basics of option theory, single and multi-period binomial pricing models, Cox-Ross-Rubinstein (CRR) model, volatility, Black-Scholes formula for option pricing as a limit of CRR model, Greeks and hedging.

Unit-III

Portfolio Optimization: Mean-Variance portfolio theory: Markowitz model, Capital Asset Pricing Model (CAPM), Factor models.

Unit-IV

Interest Rates and Interest Rate Derivatives, Binomial Tree Models.

Suggested Books and References

- 1. D. G. Luenberger, Investment Science, Oxford University Press, 1999 (new edn. 2013).
- 2. M. Capińsky and T. Zastawniak, Mathematics for Finance: An Introduction to Financial Engineering, Springer, 2004 (new edn, 2011).
- 3. J C Hull, Options, Futures and other Derivatives, Prentice Hall, 8thedn, (2011).
- 4. S. Chandra, S. Dharmaraja, A. Mehra and R.Khemchandani, Financial Mathematics: An Introduce Publishing House, 2013.

Paper	Code: CW	M - 112	Pa	per: Differential	ole Manifolds	L	T/P	С				
	Paper ID	:				4	-	4				
Markii	ng Scheme	:										
	• Te	eachers Co	ntinuo	us Evaluation: 1	25 marks							
	• Te	erm end Th	eory E	Examinations: '	75marks							
Course	• Objective	s:										
1:												
2:	To give introduction about calculus on differentiable manifolds											
3:	To give introduction about connections, Riemannian metrics and curvatures on differentiable											
	manifolds											
4:	To introd	uce variatio	ons of	arc length and exp	onential maps, Jac	obi vecto	r field					
Course	Outcome											
CO1:				oncepts of manifol								
CO2:				apply calculus or								
CO3:					nian connections a							
CO4:					nd variation of arc	length, e	xponential 1	maps and				
		ations on sr										
	Outcome	s (CO) to H	Progra	mme Outcomes ((PO) Mapping (So	ale 1: lov	w, 2: Mediu	ım, 3:				
High)					1							
)/PO	PO1		PO2	PO3		PO4					
	01	3		2	1		2					
	02	3		2	1		2					
	O3	3		2	1		2					
C	04	3		2	1		2					

<u>Unit I:</u>

<u>Introduction</u> : Topological and differentiable manifold withexamples, product manifolds, vectorfield and tangent space, Lie brackets, differentialmap and Jacobians, immersions and imbeddings, differentialforms and cotangent space, pull back map, geodesic and parallel transportation, covariant derivative and coefficients of affine connections.

<u>Unit II</u>

<u>Calculus on Manifolds</u>: Exteriorderivative, Lie derivative, gradient, curl, divergence, Laplacian, Hessian on manifolds, interiorproduct, orientations and volume element, integration in Rⁿ and itsgeneralisation to manifolds, Stoke'stheorem

<u>Unit III</u>:

<u>Riemannian Connections and Curvatures</u>: Levi-Civita connections, torsions and symmetry, Riemannianmetrics and Riemannian connections, Riemanniancurvature, sectionalcurvature, Ricci curvature, scalarcurvature, connectionforms, structural equations, curvatureforms.

Unit IV:

<u>Variations of Arc Length</u>: First and second variation of arc length, Bonnet Theorem, exponentialmap, Jacobi vectorfields and conjugate points, Submanifoldswithexamples, tangent space and normal space.

SuggestedReadings and References

- 1. RiemannianGeometry, M. P. Do Carmo, 1992, Birkhauser Boston
- 2. The Geometry of Physics, Theodore Frankel, 2011, Cambridge Universitypress
- 3. Introduction to Smooth manifolds, J.M.Lee, 2013, Springer-Verlag New York

Paper Code: C	CWM - 113	Paper: Spaces	Lie	Groups	andH	Iomogeneous	L	T/P	С
Paper	ID:						4	-	4
Marking Scheme									
1. Teachers	Continuous Ev	valuation: 2	5 mai	rks					
2. Term end	l Theory Exam	inations: 75	5 mar	ks					
Course Objectiv	es:								
1:	To give an in	troductory	course	e on the the	eory of	Lie groups			
2:	To give basic	concepts a	bout]	Representa	tion the	eory			
3:	To give an in	troductory	course	e on the the	eory of	homogeneous s	spaces.		
4:	To introduce	basic conce	epts al	bout symm	etric sp	aces			
Course Outcome	es (CO):								
CO1:	Students will	learn basic	conc	epts of Lie	groups				
CO2:	Students will	understand	l elem	entary con	cepts a	bout Representa	ation th	eory	
CO3:	Students will	be familiar	· with	Homogene	ous spa	ces and with co	mputat	ion of bi	-
	invariant met	rics							
CO4:	Students will	learn basic	conc	epts about	symme	tric spaces and	with c	omputat	ion of
	G-invariant n	netrics							
Course Outcome High)	es (CO) to Pro	gramme O	outco	mes (PO) I	Mappi	ng (Scale 1: lov	v, 2: M	ledium, i	3:
CO/PO		PO1		PO2		PO3		PO4	
CO1		3		2		1		2	
CO2		3		2		1		2	
CO3		3		2		1		2	
CO4		3		2		1		2	

Unit-I

Lie groups, Example of Lie groups, Smooth manifolds: A review, tangent space of a Lie group- Lie algebras, One parameter subgroups, the Campbell-Baker-Hausdorff series, Lie theorems.

Unit-II

Representation theory: elementary concepts, Adjoint representation, Killing form, tori, Classification of compact and connected Lie groups, Complex semisimple Lie algebras.

Unit-III

Left invariant and bi-invariant metrics, Geometrical aspect of a compact Lie group, Homogeneous spaces, Coset manifolds, Reductive homogeneous spaces, Isotropy representation.

Unit-IV

G-invariant metrics, Riemannian connection, Curvature, Symmetric spaces, structure of symmetric space, Geometry of symmetric space, duality, Hypersurfaces in metric Lie groups.

Text books/Reference books:

- 1. Lie Groups: An Introduction through Linear Groups, WulfRossmann, Oxford Graduate Texts in Mathematics, Oxford University Press Inc., New York.
- 2. Naive Lie Theory, John Stillwell, Springer, 2008.
- 3. Matrix Groups: An Introduction to Lie Group Theory, Andrew Baker, Springer, 2003.
- 4. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Brian C. Hall, Springer, 2004.
- 5. Lie Groups: An Approach through Invariants and Representations, Claudio Procesi, Springer, 2006.
- 6. Lie Groups beyond an Introduction, Anthony W. Knapp, Birkhauser, 2002.
- 7. Differential Geometry, Lie Groups, and Symmetric Spaces, SigurdurHelgason, American Mathematical Society, 2001.